
Graphical Models and Inference, MT 2011 Solution Sheet 7

1. Consider the causal Bayesian network with variables A,B,C,D,E, F
determined by A,B,C being mutually independent and binary with
values {−1, 1} and P (A = 1) = P (B = 1) = P (C = 1) = 1/2 and
D = AB, E = BC, F = DE.

(a) Draw the graph of the associated Bayesian network

A B C

D E

F

(b) Find P (C = 1 |A = −1).

C and A are marginally independent and hence

P (C = 1 |A = −1) = 1/2.

(c) Find P (E = 1 |F = 1, B = −1).

This can be found by probability propagation, but can also be
calculated semidirectly:

P (A,C,D,E |F = 1, B = −1) ∝
P (A)P (D |A,B = −1)P (C)P (E |C,B = −1)P (F = 1 |D,E).

Adding over A and C yields

P (D,E |F = 1, B = −1) ∝
P (F = 1 |D,E).

Finally adding over D yields this probability to be 1/2.

The result can also be obtained directly by realising that, condi-
tional on B, D and E are independent and uniformly distributed.

(d) Find the intervention probability P (E = 1 |F ← 1, B ← −1).

It makes no change to E that F is set, so the setting of F can
be ignored. Since B is a founder, P (· |B ← −1) = P (· |B = −1)
and hence

P (E = 1 |F ← 1, B ← −1) = P (E = 1 |B = −1) = 1/2.
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Clearly, this example is very special because of the massive symmetry
in the specification of the network.

2. Let X1, X2, X3, X4, X5 be independent with Xi ∼ N (0, 1). Define
recursively the structural equation system

Y1 ← X1, Y2 ← X2+Y1, Y3 ← X3+Y2, Y4 ← X4+Y2+Y3, Y5 ← X5+Y1+Y4

and assume intervention in the system is made by replacement, so the
associated Bayesian network is causal

(a) Draw the causal DAG associated with this system

Y1

Y2

Y3

Y4

Y5

(b) Find the concentration matrix K = Σ−1 of Y .

Using the recursive definition we find the joint density to be

f(y) ∝ e−{y21+(y2−y1)2+(y3−y2)2+(y4−y3−y2)2+(y5−y4−y1)2}/2.

Expanding the squares and identifying coefficients we find the
concentration matrix to be

KY =


3 −1 0 1 −1
−1 3 0 −1 0
0 0 2 −1 0
1 −1 −1 2 −1
−1 0 0 −1 1

 .

(c) Construct the dependence graph of Y ;

From the concentration matrix we find:
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Y1

Y2

Y4

Y5Y3

Note this is smaller than the moral graph, which also has a link
between Y2 and Y3.

(d) Find the conditional distribution of Y5 given Y3 = 0, Y1 = 0.

The concentration matrix of Y2, Y4, Y5 conditional on Y1 and Y3
is

K245|13 =

 3 −1 0
−1 2 −1
0 −1 1

 .
The variance of the conditional distribution of Y5 is thus the lower
corner of the inverse of this matrix, ie

V (Y5 |Y1, Y3) =

det

(
3 −1
−1 2

)
detK245|13

= 5/2.

thus, Y5 |Y1 = 0, Y3 = 0 ∼ N (0, 5/2).

(e) Find the intervention distribution of Y5 given Y3 ← 0, Y1 ← 0.

By intervention with replacement, this corresponds to the system

Y1 ← 0, Y2 ← X2, Y3 ← 0, Y4 ← X4 + Y2, Y5 ← X5 + Y4

Hence V (Y5) = 3 in this system and thus

Y5 |Y3 ← 0, Y1 ← 0 ∼ N (0, 3).

3. Let A = C be the cliques of a chordal graph G = (V,E). For A ⊆ V
let H(A) denote the entropy of XA.

Show that
H(V ) =

∑
C∈C

H(C)−
∑
S∈S

ν(S)H(S)
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where S are the minimal complete separators of G and ν(S) the number
of times that the set S appears as an intersection between neighbouring
cliques in a junction tree for A.

For a junction tree with two cliques, this was proved in Problem 2,
sheet 4.

Assume now the result is true for any junction tree with at most n
cliques and let T be a junction tree with n+ 1 cliques. Let L be a leaf
of T , and let C′ = C \ {L} denote the remaining cliques. Similarly, let
T ′ be the junction tree for C′, obtained by removing the leaf L, and
let V ′ = ∪C∈C′C.

The inductive hypothesis yields

H(V ′) =
∑
C∈C′

H(C)−
∑
S∈S′

ν ′(S)H(S). (1)

Let now S∗ = L∩V ′ be the separator in T associated with the leaf L.
This S∗ separates L from V ′ since T is a junction tree. Thus, using
the result for n = 2 we get

H(V ) = H(V ′) +H(L)−H(S∗). (2)

Combining (1) with (2) using that

ν(S) =

{
ν ′(S) if S 6= S∗

ν ′(S∗) + 1 if S = S∗

the result follows.

Note that this induction proof is a model for almost all proofs involving
junction trees.

4. Consider the following directed acyclic graphs, and in each case, list
all DAGs in their Markov equivalence class and verify in every single
case whether they are Markov equivalent to an undirected graph.

(a) 1→ 2, 3→ 2, 2→ 4, 4→ 5, 2→ 5;

Arrow between 4 and 5 can be reversed. As 1 and 3 are unmar-
ried parents, the DAG is not Markov equivalent to an undirected
graph.

(b) 1→ 2, 2→ 3, 2→ 4, 4→ 5, 6→ 5;

The following DAGs are all equivalent to this:

2→ 1, 2→ 3, 2→ 4, 4→ 5, 6→ 5;

2→ 1, 3→ 2, 2→ 4, 4→ 5, 6→ 5;

2→ 1, 2→ 3, 4→ 2, 4→ 5, 6→ 5;

None of them are equivalent to an undirected graph as 4 and 6
are unmarried parents.
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(c) 1→ 2, 2→ 3, 2→ 4, 4→ 5, 5→ 6;

This is a tree, and is therefore Markov equivalent to the undi-
rected version of the tree and also to any directed version ob-
tained by choosing any of the six vertices as root and directing
arrows away from the root.

Steffen L. Lauritzen, University of Oxford November 28, 2011
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