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1. Prove that the following statements are all equivalent.

(1) For all (x, y, z): f(x, y, z)f(z) = f(x, z)f(y, z);

(2) For all (x, y, z) with f(z) > 0: f(x, y, z) = f(x | z)f(y, z);

(3) For all (x, y, z) with f(y, z) > 0: f(x | y, z) = f(x | z);

(4) For all (x, y, z) with f(y, z) > 0: f(x, z | y) = f(x | z)f(z | y);

(5) For some functions h and k it holds: f(x, y, z) = h(x, z)k(y, z).

For simplicity we consider the case where f(x, y, z) > 0. The general case
follows by taking care with zero entries.

(1)⇒ (2):

f(x, y, z) =
f(x, z)f(y, z)

f(z)
= f(x | z)f(y, z);

(2)⇒ (3):

f(x | y, z) =
f(x, y, z)

f(y, z)
=

f(x | z)f(y, z)

f(y, z)
= f(x | z);

(3)⇒ (4):
f(x, z | y) = f(x | y, z)f(z | y) = f(x | z)f(z | y);

(4)⇒ (5):

f(x, y, z) = f(x, z | y)f(y) = f(x | z)f(z | y)f(y) = h(x, z)k(y, z)

where h(x, z) = f(x | z) and k(y, z) = f(z | y)f(y);

(5)⇒ (1):

Let h̄(z) =
∑

x h(x, z) and k̄(z) =
∑

y h(y, z). Then

f(x, z) =
∑
y

f(x, y, z) =
∑
y

h(x, z)k(y, z) = h(x, z)k̄(z)

and

f(y, z) =
∑
x

f(x, y, z) =
∑
x

h(x, z)k(y, z) = h̄(z)k(y, z)

and
f(z) =

∑
x,y

f(x, y, z) =
∑
x,y

h(x, z)k(y, z) = h̄(z)k̄(z).

Hence

f(x, y, z)f(z) = h(x, z)k(y, z)h̄(z)k̄(z) = f(x, z)f(y, z).
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2. Prove that for discrete random variables X, Y , Z, and W it holds that

(C1) If X ⊥⊥Y |Z then Y ⊥⊥X |Z;

(C2) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥U |Z;

(C3) If X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥Y | (Z,U);

(C4) If X ⊥⊥Y |Z and X ⊥⊥W | (Y,Z), then X ⊥⊥ (Y,W ) |Z.

(C1):

This follows e.g. from (1) as this is symmetric in x and y;

(C2):

Let f(x, y, z) = h(x, z)k(y, z). Then

f(x, u, z) =
∑

y:g(y)=u

h(x, z)k(y, z) = h(x, z)k̃(u, z)

where k̃(u, z) =
∑

y:g(y)=u k(y, z).

(C3):

Let f(x, y, z) = h(x, z)k(y, z). Then

f(x, y, u, z) = h(x, z)k(y, z)1{g(y)=u}(y, u) = h(x, z)ǩ(y, u, z),

where

1{g(y)=u}(y, u) =

{
1 if g(y) = u
0 otherwise

and ǩ(u, z) = k(y, z)1{g(y)=u}(y, u).

(C4):

Let f(x, y, z) = h(x, z)k(y, z) from (5) and f(w |x, y, z) = f(w | y, z)
from (3). Then

f(x, y, z, w) = h(x, z)k(y, z)f(w | y, z) = h(x, z)k̃(y, z, w),

with k̃(y, z, w) = k(y, z)f(w | y, z). The conclusion follows from (5).

3. Show that for binary random variables (X,Y, Z) it holds that

X ⊥⊥Y and X ⊥⊥Y |Z ⇒ (X,Z)⊥⊥Y or X ⊥⊥ (Y,Z).

Define the matrices A, B, and C as

axy = f(x, y); bxz = f(x | z); c(z, y) = f(y, z).

Since X ⊥⊥Y |Z we have

f(x, y) =
∑
z

f(x, y, z) =
∑
z

f(x, y, z) =
∑
z

f(x | z)f(y, z) =
∑
z

bxzczy.

In matrix formulation we can thus write

A = BC.
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Since X ⊥⊥Y we have f(x, y) = h(x)k(y) and all rows in A are proportional
to the vector k = {k(y)}. Thus the matrix A has rank 1 and detA = 0. But

det(A) = det(B) det(C)

so we must either have detB = 0 or detC = 0. In the binary case the
matrices are all 2× 2 matrices so e.g.

detB = 0 ⇐⇒ rankB = 1 ⇐⇒ bxz = u(x)v(z).

Hence in this case

f(x, y, z) = u(x)v(z)f(y, z) = h̃(x)k̃(y, z)

so X ⊥⊥ (Y, Z).

In the case where detC = 0 we similarly conclude (X,Z)⊥⊥Y .

In the non-binary case the situation is more complicated as we cannot deduce
that either B or C has rank 1. In fact, we can only use Sylvester’s rank
inequality to conclude that

rank(A) = 1 = rank(BC) ≥ rank(B) + rank(C)− |Z|

where |Z| is the number of possible values of Z. For |Z| = 2 we again obtain
that either rank(B) = 1 or rank(C) = 1.

4. Shown that graph separation ⊥G in an undirected graph G is a compositional
graphoid.

Symmetry any path from A to B is also a path from B to A and vice
versa;

Decomposition If all paths from A to B ∪ D go via C this is obviously
also true for all paths from A to B or A to D;

Weak union If all paths from A to B go via C, they clearly also go via
C ∪D;

Contraction We must show that all paths from A to B ∪D go via C. As
this is assumed for paths to B we may focus on paths to D. But if such
a path would go through B without intersecting C it would contradict
the assumption that A⊥G B |C;

Intersection We must show that any path from A to B goes via D; if
this is not the case, it must go through C as A⊥G B | (C ∪ D); but
since A⊥G C |B ∪D, it cannot go through B before C, hence must go
through D;

Composition This is bleedingly obvious. . .
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5. Consider the graph below:
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(a) Write down all conditional independence statements for this graph cor-
responding to the pairwise Markov property;

(b) Write down all conditional independence statements for this graph cor-
responding to the local Markov property;

(c) Write down some of the conditional independence statements for this
graph which follow from the global Markov property and which are not
listed above.

(a) A⊥⊥D |B,C,E;

A⊥⊥E |B,C,D;

B⊥⊥C |A,D,E;

B⊥⊥E |A,C,D;

C ⊥⊥E |A,B,D;

(b) A⊥⊥ (D,E) |B,C;

B⊥⊥ (C,E) |A,D;

C ⊥⊥ (B,E) |A,D;

D⊥⊥A |B,C,E;

E⊥⊥ (A,B,C) |D;

(c) For example:

A⊥⊥E |D, A⊥⊥D |B,C, B⊥⊥C |A,D, E⊥⊥B |D.

6. The result of this question is to be used in all remaining questions! Show that
if the distribution of X |Z is degenerate so that X in effect is a deterministic
function of Z, then X ⊥⊥Y |Z for all possible random variables Y .

This is a variant of the hopefully known fact that a constant random variable
is independent of anything.

If X |Z is degenerate we have

f(x | z) =

{
1 if x = g(z)
0 otherwise

and thus

f(x, z) =

{
f(z) if x = g(z)

0 otherwise
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which, since f(x, z) =
∑

y f(x, y, z), further implies

f(x, y, z) =

{
f(y, z) if x = g(z)

0 otherwise

The factorization (1) of question 1 now gives the result.

7. Let X = Y = Z with P{X = 1} = P{X = 0} = 1/2. Show that this
distribution satisfies (P) but not (L) with respect to the graph below.

X Y Z
s ss

The pairwise Markov property says that X ⊥⊥Y |Z and X ⊥⊥Z |Y , which
both are satisfied, since X is a deterministic function of both Y and Z.
However, we have that bd(X) = ∅ so (L) would imply X ⊥⊥ (Y, Z) which is
false.

8. Let U and Z be independent with

P (U = 1) = P (Z = 1) = P (U = 0) = P (Z = 0) = 1/2,

W = U , Y = Z, and X = WY . Show that this distribution satisfies (L) but
not (G) w.r.t. the graph below.

U W X Y Z
s s ss s

The local Markov property follows because all variables depend deterministi-
cally on their neighbours. But the global Markov property fails; for example
it is false that W ⊥⊥Y |X.

Steffen L. Lauritzen, University of Oxford October 17, 2011
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