- 1. Consider the DAG \mathcal{D} with arrows $A \to C, B \to C, B \to D, C \to E, D \to F, E \to G, E \to H, F \to G, G \to J, I \to J.$
 - (a) Find the moral graph \mathcal{D}^m of \mathcal{D} ;
 - (b) Find a minimal chordal cover \mathcal{G} of \mathcal{D}^m , i.e. a chordal graph $\mathcal{G} \supset \mathcal{D}^m$ with the property that removal of any edge in \mathcal{G} which is not an edge in \mathcal{D}^m will not be chordal;
 - (c) Arrange the cliques of \mathcal{G} in a junction tree;
 - (d) For a specification of all conditional distributions $p_{v \mid pa(v)}, v \in V$, allocate appropriate potentials to the junction tree to prepare for probability propagation.
- 2. Consider random variables X_1, \ldots, X_6 taking values in $\{-1, 1\}$ and having distribution P with joint probability mass function determined as

$$p(x) \propto \exp\{\theta(x_1x_2 + x_2x_3 + x_2x_5 + x_3x_4 + x_3x_5 + x_3x_6)\},\$$

where $\theta \neq 0$.

- (a) Find the dependence graph of P and identify its cliques;
- (b) Set up an appropriate junction tree for probability propagation;
- (c) Allocate potentials to cliques;
- (d) Calculate $P(X_6 = 1 | X_1 = 1, X_4 = 1)$ by probability propagation.
- 3. Consider a Gaussian distribution $\mathcal{N}_4(0, \Sigma)$ with

$$K = \Sigma^{-1} = \begin{pmatrix} 5 & 1 & 4 & 4 \\ 1 & 12 & 2 & 5 \\ 4 & 2 & 14 & 2 \\ 4 & 5 & 2 & 8 \end{pmatrix}.$$

- (a) What is the marginal distribution of X_1 ?
- (b) Find the conditional distribution of (X_2, X_3) given $(X_1 = 0, X_4 = 1)$;
- (c) Find the conditional distribution of X_4 given $X_2 = 0$.