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Log-linear models

Generating class

Dependence graph of log-linear model
Conformal graphical models

Factor graphs

A density f factorizes w.r.t. A if there exist functions 1,(x) which
depend on x; only so that

F(x) = ] ¢a(x)-

acA

The set of distributions P4 which factorize w.r.t. A is the
hierarchical log—linear model generated by A.

A is the generating class of the log—linear model.
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Log-linear models

Generating class

Dependence graph of log-linear model
Conformal graphical models

Factor graphs

For any generating class .A we construct the dependence graph
G(A) = G(P4) of the log—linear model P4.

The dependence graph is determined by the relation
a~f < dacA:a,B € a.

For sets in A are clearly complete in G(.A) and therefore
distributions in P 4 do factorize according to G(.A).

They are thus also global, local, and pairwise Markov w.r.t. G(.A).
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Log-linear models

Generating class
Dependence graph of log-linear model

Conformal graphical models
Factor graphs

As a generating class defines a dependence graph G(.A), the
reverse is also true.
The set C(G) of cliques (maximal complete subsets) of G is a
generating class for the log—linear model of distributions which
factorize w.r.t. G.
If the dependence graph completely summarizes the restrictions
imposed by A, i.e. if

A= C(G(A)),

A is conformal.
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Log-linear models

Generating class

Dependence graph of log-linear model
Conformal graphical models

Factor graphs

as

o] J

The factor graph of A is the bipartite graph with vertices V U A
and edges define by

a~a < «aca.

Using this graph even non-conformal log—linear models admit a
simple visual representation.
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Maximum likelihood Likelihood equations

Iterative Proportional Scaling
Closed form maximum likelihood

The maximum likelihood estimate p of p is the unique element of
‘P4 which satisfies the system of equations

np(xa) = n(x,),Va € A, x, € X,. (1)

Here g(x;) = Zy:yazxa g(y) is the a-marginal of the function g.
The system of equations (1) expresses the fitting of the marginals

in A.
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Maximum likelihood Likelihood equations

Iterative Proportional Scaling
Closed form maximum likelihood

There is a convergent algorithm which solves the likelihood
equations. This cycles (repeatedly) through all the a-marginals in
A and fit them one by one.

For a € A define the following scaling operation on p:

n(xa)
np(xa)’

where 0/0 = 0 and b/0 is undefined if b # 0.

(Tap)(x) + p(x) xeX
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Maximum likelihood Likelihood equations
Iterative Proportional Scaling

Closed form maximum likelihood

Make an ordering of the generators A = {a1,...,ax}. Define S by
a full cycle of scalings

Sp=T,, - T3 Ty
Define the iteration
po(x) < 1/|X|, pn= Spn-1,n=1,....
It then holds that

lim pn:f)

n—oo

where p is the unique maximum likelihood estimate of p € P4, i.e.
the solution of the equation system (1).
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Maximum likelihood Likelihood equations

Iterative Proportional Scaling
Closed form maximum likelihood

In some cases the IPS algorithm converges after a finite number of
cycles. An explicit formula is then available for the MLE of p € P4.

Consider first the case of a generating class with only two
elements: A = {a, b} and thus V = aU b. Let c = an b. Recall

that the MLE is the unique solution to
np(xs) = n(xs),Va € A, x, € X,.

Let
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Maximum likelihood

Likelihood equations

Iterative Proportional Scaling
Closed form maximum likelihood

) Ma)n(0)
p*(x) n(x)n
This satisfies (1) since e.g.
np*(xa) Z n(ya)n(yb) n(Xa)n(yb)

n(xc)

n(xa) = n(f:)an Xc) = n(x.

and similarly with the other marginal. Hence we have p = p*
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Decomposable models Chordal graphs

The generating class A = {a, b} is conformal. Its dependence
graph G has exactly two cliques a and b.

The graph is chordal, meaning that any cycle of length > 4 has a
chord.

A is called decomposable if A is conformal, i.e. A=C(G), and G
is chordal.

The IPS-algorithm converges after a finite number of cycles (at
most two) if and only if A is decomposable.
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Chordal graphs

Decomposition of Markov properties

Factorization of Markov distributions
Graph decomposition Explicit formula for MLE

Properties of decomposability

Non-decomposable generating classes

A generating class can be non-decomposable in different ways.

The generating class A = {{1,2},{2,3},{1,3}} is the smallest
non-decomposable generating class. This is non-conformal.

The graph below is the smallest non-chordal graph and its
generating class is non-decomposable:
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Chordal graphs
Decomposition of Markov properties
Factorization of Markov distributions

Graph decomposition Explicit formula for MLE
Properties of decomposability

Consider an undirected graph G = (V/, E). A partitioning of V into
a triple (A, B, S) of subsets of V forms a decomposition of G if

AlgB|S and S is complete.

The decomposition is proper if A# () and B # ().
The components of G are the induced subgraphs Gaus and Ggus.
A graph is prime if no proper decomposition exists.
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Chordal graphs

Decomposition of Markov properties

Factorization of Markov distributions
Graph decomposition Explicit formula for MLE

Properties of decomposability

Examples

The graph to the left is prime

3 6
Decomposition with A ={1,3}, B={4,6,7} and S = {2,5}
2 4 2 2 4
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Chordal graphs
Decomposition of Markov properties
Factorization of Markov distributions

Graph decomposition Explicit formula for MLE
Properties of decomposability

Suppose P satisfies (F) w.r.t. G and (A, B, S) is a decomposition.
Then

(i) Paus and Pgys satisfy (F) w.r.t. Gaus and Ggus respectively;
(i) f(x)fs(xs) = faus(xaus)feus(xBus)-

The converse also holds in the sense that if (i) and (ii) hold, and
(A, B, S) is a decomposition of G, then P factorizes w.r.t. G.
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Chordal graphs

Decomposition of Markov properties

Factorization of Markov distributions
Graph decomposition Explicit formula for MLE

Properties of decomposability

Decomposability

Any graph can be recursively decomposed into its maximal prime

subgraphs:
2 4 2 2 4

3 6 3 ;

A graph is decomposable (or rather fully decomposable) if it is
complete or admits a proper decomposition into decomposable
subgraphs.

Definition is recursive. Alternatively this means that all maximal
prime subgraphs are cliques.
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Chordal graphs
Decomposition of Markov properties
Factorization of Markov distributions

Graph decomposition Explicit formula for MLE
Properties of decomposability

Recursive decomposition of a decomposable graph into cliques
yields the formula:

F(x) [T fs(xs)"® = T felxc).

Ses ceC

Here S is the set of minimal complete separators occurring in the
decomposition process and v(S) the number of times such a
separator appears in this process.
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Chordal graphs
Decomposition of Markov properties
Factorization of Markov distributions

Graph decomposition Explicit formula for MLE
Properties of decomposability

As we have a particularly simple factorization of the density, we
have a similar factorization of the maximum likelihood estimate for
a decomposable log-linear model.

The MLE for p under the log-linear model with generating class

A = C(G) for a chordal graph G is

5(x) — [Icec n(xc)
P = Tses nxs) @

where v(S) is the number of times S appears as a separator in the
total decomposition of its dependence graph.
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Chordal graphs

Decomposition of Markov properties

Factorization of Markov distributions
Graph decomposition Explicit formula for MLE

Properties of decomposability

Perfect numbering

A numbering V = {1,...,|V|} of the vertices of an undirected
graph is perfect if

Vi=2,...,]V|]:bd(j)n{1,...,j — 1} is complete in G.

A set S is an («, 3)-separator if a Lg 3| S,
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Chordal graphs

Decomposition of Markov properties

Factorization of Markov distributions
Graph decomposition Explicit formula for MLE

Properties of decomposability

Characterizing chordal graphs

The following are equivalent for any undirected graph G.
(i) G is chordal;

(i) G is decomposable;

(iii) All maximal prime subgraphs of G are cliques;

(iv) G admits a perfect numbering;

(v) Every minimal («, B)-separator are complete.

Trees are chordal graphs and thus decomposable.
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Greedy algorithm
Maximum cardinality search

Identifying chordal graphs

Here is a (greedy) algorithm for checking chordality:
1. Look for a vertex v* with bd(v*) complete. If no such vertex
exists, the graph is not chordal.
2. Form the subgraph Gy~ and let v* = [V/[;
3. Repeat the process under 1;
4. If the algorithm continues until only one vertex is left, the
graph is chordal and the numbering is perfect.
The complexity of this algorithm is O(|V/|?).
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Greedy algorithm
Maximum cardinality search

Identifying chordal graphs

Greedy algorithm

Is this graph chordal?
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Greedy algorithm
Maximum cardinality search

Identifying chordal graphs

Greedy algorithm

7

This graph is not chordal, as there is no candidate for number 4.
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Greedy algorithm
Maximum cardinality search
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Greedy algorithm
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Greedy algorithm
Maximum cardinality search
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Greedy algorithm
Maximum cardinality search

Identifying chordal graphs

Greedy algorithm

This graph is chordal!
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Greedy algorithm
Maximum cardinality search

Identifying chordal graphs

This simple algorithm has complexity O(|V| + |E|):

1.
2.

Choose vy € V arbitrary and let vo = 1;
When vertices {1,2,...,/} have been identified, choose

v=j+1among V\{1,2,...,/} with highest cardinality of
its numbered neighbours;

3. Ifbd(j+1)N{1,2,...,/} is not complete, G is not chordal;
4. Repeat from 2;

5. If the algorithm continues until only one vertex is left, the

graph is chordal and the numbering is perfect.
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Greedy algorithm
Maximum cardinality search

Identifying chordal graphs

Maximum Cardinality Search

Is this graph chordal?
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Greedy algorithm
Maximum cardinality search

Identifying chordal graphs

Maximum Cardinality Search

*% 5

Is this graph chordal?
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Greedy algorithm
Maximum cardinality search

Identifying chordal graphs

Maximum Cardinality Search

7 5

The graph is not chordal! because 7 does not have a complete
boundary.
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Greedy algorithm
Maximum cardinality search

Identifying chordal graphs

Maximum Cardinality Search

7 5

MCS numbering for the chordal graph. Algorithm runs essentially
as before.
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Greedy algorithm
Maximum cardinality search

Identifying chordal graphs

A chordal graph

This graph is chordal, but it might not be that easy to
see. .. Maximum Cardinality Search is handy!
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Greedy algorithm
Maximum cardinality search

Identifying chordal graphs

Finding the cliques of a chordal graph

From an MCS numbering V = {1,...,|V|}, let
By = bd(\)N{1,...,.A—1}

and 7y = |By|. Call X a ladder vertex if A = |V] or if
ma+1 < 7y + 1. Let A be the set of ladder vertices.
2 1

m: 0,1,2,2,2,1,1.
The cliques are Cy = {\} U By, A € A\.
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