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Example is compelling for causal reasons
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Causal interpretations are tied to the notion of conditioning by
intervention

P(X = x |Y ← y) = P{X = x | do(Y = y)} = p(x || y), (1)

which in general is quite different from conventional conditioning
or conditioning by observation which is

P(X = x |Y = y) = P{X = x | is(Y = y)} = p(x | y) = p(x , y)/p(y).

A causal interpretation of a Bayesian network involves giving (1) a
simple form.

[Also distinguish p(x | y) from P{X = x | see(Y = y)}.
Observation/sampling bias.]
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We say that a BN is causal w.r.t. atomic interventions at B ⊆ V if
it holds for any A ⊆ B that

p(x || x∗A) =
∏

v∈V \A

p(xv | xpa(v))

∣∣∣∣∣∣
xA=x∗A

For A = ∅ we obtain standard factorisation.

Note that conditional distributions p(xv | xpa(v)) are stable under
interventions which do not involve xv . Such assumption must be
justified in any given context.
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Contrast the formula for intervention conditioning with that for
observation conditioning:

p(x || x∗A) =
∏

v∈V \A

p(xv | xpa(v))

∣∣∣∣∣∣
xA=x∗A

=

∏
v∈V p(xv | xpa(v))∏
v∈A p(xv | xpa(v))

∣∣∣∣
xA=x∗A

.

whereas

p(x | x∗A) =

∏
v∈V p(xv | xpa(v))

p(xA)

∣∣∣∣
xA=x∗A

.
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An example
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p(x || x∗5 ) = p(x1)p(x2 | x1)p(x3 | x1)p(x4 | x2)

× p(x6 | x3, x∗5 )p(x7 | x4, x∗5 , x6)

whereas

p(x | x∗5 ) ∝ p(x1)p(x2 | x1)p(x3 | x1)p(x4 | x2)

× p(x∗5 | x2, x3)p(x6 | x3, x∗5 )p(x7 | x4, x∗5 , x6)
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DAG D can also represent structural equation system:

Xv ← gv (xpa(v),Uv ), v ∈ V , (2)

where gv are fixed functions and Uv are independent random
disturbances.

Intervention in structural equation system can be made by
replacement, i.e. so that Xv ← x∗v is replacing the corresponding
line in ‘program’ (2).

Corresponds to gv and Uv being unaffected by the intervention if
intervention is not made on node v . Hence the equation is
structural.
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Example revisited
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For the network shown, we get

X1 ← α1 + U1

X2 ← α2 + β21x1 + U2

X3 ← α3 + β31x1 + U3

X4 ← α4 + β42x2 + U4

X5 ← α5 + β52x2 + β53x3 + U5

X6 ← α6 + β63x3 + β65x5 + U6

X7 ← α7 + β74x4 + β75x5 + β76x6 + U7.
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After intervention by replacement, the system changes to

X1 ← α1 + U1

X2 ← α2 + β21x1 + U2

X3 ← α3 + β31x1 + U3

X4 ← x∗4

X5 ← α5 + β52x2 + β53x3 + U5

X6 ← α6 + β63x3 + β65x5 + U6

X7 ← α7 + β74x∗4 + β75x5 + β76x6 + U7.
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Justification of causal models by structural equations

Intervention by replacement in structural equation system implies
D causal for distribution of Xv , v ∈ V .

Occasionally used for justification of CBN.

Ambiguity in choice of gv and Uv makes this problematic.

May take stability of conditional distributions as a primitive rather
than structural equations.

Structural equations more expressive when choice of gv and Uv

can be externally justified.
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a - treatment with AZT; l - intermediate response (possible lung
disease); b - treatment with antibiotics; r - survival after a fixed
period.
Predict survival if Xa ← 1 and Xb ← 1, assuming stable
conditional distributions.
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G-computation
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p(1r || 1a, 1b) =
∑
xl

p(1r , xl || 1a, 1b)

=
∑
xl

p(1r | xl , 1a, 1b)p(xl | 1a).
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Augment each node v ∈ A where intervention is contemplated
with additional parent variable Fv .
Fv has state space Xv ∪ {φ} and conditional distributions in the
intervention diagram are

p′(xv | xpa(v), fv ) =

{
p(xv | xpa(v)) if fv = φ

δxv ,x∗v if fv = x∗v ,

where δxy is Kronecker’s symbol

δxy =

{
1 if x = y
0 otherwise.

Fv is forcing the value of Xv when Fv 6= φ.
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It now holds in the extended intervention diagram that

p(x) = p′(x |Fv = φ, v ∈ A),

but also

p(x || x∗B) = P(X = x |XB ← x∗B)

= P ′(x |Fv = x∗v , v ∈ B,Fv = φ, v ∈ B \ A),

In particular it holds that if pa(v) = ∅, then p(x | x∗v ) = p(xv || x∗v ).
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Treatment variable t, response r , set of observed covariates C ,
unobserved variables U.

When and how can p(Xr || xt) be calculated from p(xt , xr , xC ), the
latter in principle being observable from data?

In this case we could say that C is a identifier for assessing the
effect of T on R.

Answer can be found by analysing intervention diagram.

Simplest cases known as back-door and front-door criteria and
formulae.
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D′ denotes D augmented with Ft .
Assume C ⊇ C0, where C0 satisfies

(BD1) Covariates in C0 are unaffected by an intervention:
C0⊥D′ Ft ;

(BD2) Intervention only affects response through the
treatment it chooses: R ⊥D′ Ft |C0 ∪ {t}.

Then C identifies the effect of the treatment t on R as

p(xr || x∗t ) =
∑
xC0

p(xr | xC0 , x
∗
t )p(xC0).
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Confounding
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The unobserved confounder Xu is affecting both treatment and
response.
BD2 is violated; graph to the right reveals that Ft is not
d-separated from r by t, so treatment effect is not identifiable.

Steffen Lauritzen, University of Oxford Graphical models for causal inference



Randomisation
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When Xt is randomised, possibly depending on observed covariate
c , confounding is resolved.
Now Ft ⊥D′ r | {c , t} and c is an identifier.
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Sufficient covariate
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Alternatively, an observed covariate c can ‘screen away’ the
confounding effect on the treatment.
Also here, Ft ⊥D′ r | {c , t} and c is an identifier.
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Instrumental variable
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i is an instrumental variable as it affects t and it is uncorrelated
with the confounders.
Graph to the right shows r ⊥D′ Fi | {i , t} so the effect of the
instrument can be identified.
However, r is not d-separated from Ft by t so the effect of the
treatment itself is not.
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Note that in the linear case, the effect of t on r can be found as
the ratio of effects of i on r and the effect of i on t, both of which
are identified.

In the linear case, many more effects can be identified. But
linearity and additivity of errors are very strong assumptions.

Bounds are available in the general case
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