
Contents

7 Graphical Models for Complex Stochastic Systems 3
7.1 Introduction . 3
7.2 Bayesian Graphical Models . 4

7.2.1 Simple Repeated Sampling . 4
7.2.2 Models based on Directed Acyclic Graphs 5

7.3 Inference based on Probability Propagation 8
7.4 Computations using Monte Carlo Methods 10

7.4.1 Metropolis–Hastings and the Gibbs Sampler 11
7.4.2 Using WinBUGS via R2WinBUGS 12

7.5 Various . 15

1

Chapter 7

Graphical Models for Complex Stochastic
Systems

7.1 Introduction

In this chapter we describe of the use of graphical models in a Bayesian
setting, in which parameters are treated as random quantities on equal foot-
ing with the random variables, enabling analysis of stochastic systems based
on. As this has become one of the most successful applications of graphi-
cal models, we shall give a brief treatment here and refer to ? for a more
comprehensive discussion.

The paradigm used in Chapters ??, ?? and ?? was that of identifying a
joint distribution of a number of variables based on independent and identi-
cally distributed samples, with parameters unknown apart from restrictions
determined by a log–linear, Gaussian, or mixed graphical model.

In contrast, Chap. ?? illustrated how a joint distribution for a Bayesian
network may be constructed from a collection of conditional distributions; the
network could be subsequently used to infer values of interesting unobserved
quantities, given evidence, i.e. observations of other quantitites. As parame-
ters and random variables are on an equal footing in the Bayesian paradigm,
we may think of the interesting unobserved quantitites as the parameters and
the evidence as data.

In the present chapter we take this idea to its consequence in a general
statistical setting. We mainly focus on constructing full joint distributions
of parameters, unobserved, and observed random variables by specifying a
collection of conditional distributions for a graphical model determined by
a directed acyclic graph with nodes representing all these quantities. Bayes’
Theorem is then invoked to perform the necessary inference.

3

4 7 Graphical Models for Complex Stochastic Systems

7.2 Bayesian Graphical Models

7.2.1 Simple Repeated Sampling

In the simplest possible setting we specify the joint distribution of a param-
eter θ and data x through a prior distribution π(θ) for θ and a conditional
distribution p(x | θ) of data x for fixed value of θ, leading to the joint distri-
bution

p(x, θ) = p(x | θ)π(θ).

The prior distribution represents our knowledge (or rather uncertainty) about
θ before the data have been observed. After observing that X = x our
posterior distribution π∗(θ) of θ is obtained by conditioning with the data x
to obtain

π∗(θ) = p(θ|x) =
p(x|θ)π(θ)

p(x)
∝ L(θ)π(θ),

where L(θ) = p(x | θ) is the likelihood . Thus the posterior is proportional to
the likelihood times the prior and the normalizing constant is the marginal
density p(x) =

∫
p(x|θ)π(θ)dθ.

If the data is a sample x = (x1, x2, x3, x4, x5) we can represent this process
by a small Bayesian network as shown to the left in Fig. 7.1. This network
represents the model

p(x1, . . . , x5, θ) = π(θ)

5∏
ν=1

p(xν | θ).

reflecting that the individual observations are conditionally independent and
identically distributed given θ. We can make a more compact representation
of the network by introducing a plate which indicates repeated observations,
such as shown to the right in Fig. 7.1.

ν = 1, . . . , 5

θ

x3x2x1 x4 x5

θ

xν

Fig. 7.1 Representation of a Bayesian model for simple sampling. The graph to the
left indicates that observations are conditionally independent given θ; the picture to
the right represents the same, but the plate allows a more compact representation.

7.2 Bayesian Graphical Models 5

For a more sophisticated example, consider a graphical Gaussian model
given by the conditional independence X1⊥⊥X3 |X2 for fixed value of the
concentration matrix K. In previous chapters we would have represented this
model with its dependence graph:

X2 X3X1

However, in the Bayesian setting we need to include the parameters explicitly
into the model, and could for example do that by the graph in Fig. 7.2.

ν = 1, . . . , N

k22k11

k12

k33

k23

Xν1 Xν2 Xν3

Fig. 7.2 A chain graph representing N independent observations of X =
(X1, X2, X3) from a Bayesian graphical Gaussian model in which Xν1 ⊥⊥Xν3 |Xν2 ,K
and K follows a hyper Markov prior distribution.

The model is now represented by a chain graph, where the first chain
component describes the structure of the prior distribution for the param-
eters in the concentration matrix. We have here assumed a so-called hyper
Markov prior distribution (?): conditionally on k22, the parameters (k11, k12)
are independent of (k23, k33). The plate indicates that there are N indepen-
dent observations of X, so the graph totally has 3N + 5 nodes. The chain
component on the plate reflects the factorization

f(x1, x2, x3 |K) ∝
det(K)1/2 exp{−(x21k11 + x22k22 + x23k33 + 2x1x2k12 + 2x2x3k23)/2}

for each of the individual observations of X = (X1, X2, X3).

7.2.2 Models based on Directed Acyclic Graphs

A major feature of Bayesian graphical models is that explicitly including pa-
rameters and observations themselves in the graphical representation enables
much more complex examples of observational patterns to be accommodated.
Consider for example a linear regression model

6 7 Graphical Models for Complex Stochastic Systems

Yi ∼ N(µi, σ
2) with µi = α+ βxi for i = 1, . . . , N.

To obtain a full probabilistic model we must specify a joint distribution for
(α, β, σ) whereas the dependent variables xi are assumed known (observed).
If we specify independent distributions for these quantities, Fig. 7.3 shows a
plate- based representation of this model with α, β, and σ being marginally
independent and independent of Yi.

i = 1, . . . , N

i = 1, . . . , N

βα

yi σxi

βα

µixi

yi σ

Fig. 7.3 Graphical representations of a traditional linear regression model with un-
known intercept α, slope β, and variance σ2. In the representation to the left, the
means µi have been represented explicitly.

Note that µi are deterministic functions of their parents and the same
model can also be represented without explicitly including these nodes. How-
ever, there can be specific advantages of representing the means directly in
the graph. If the independent variables xi are not centered, i.e. x̄ 6= 0, the
model would change if xi were replaced with xi − x̄, as α then would be the
conditional mean when xi = x̄ rather than when xi = 0, inducing a different
distribution of µi.

To get a full understanding of the variety and complexity of models that
can easily be described by DAGs with plates, we refer to the manual for BUGS
(?), which also gives the following example.

Weights have been measured weekly for 30 young rats have weights mea-
sured during five weeks. The observations Yij are the weights of rat imeasured
at age xj . The model is essentially a random effects linear growth curve:

Yij ∼ N (αi + βi(xj − x̄), σ2
c)

and
αi ∼ N (αc, σ

2
α), βi ∼ N (βc, σ

2
β),

where x̄ = 22. Interest particularly focuses on the intercept at zero time
(birth), denoted α0 = αc − βcx̄. The graphical representation of this model
is displayed in Fig. 7.4.

7.2 Bayesian Graphical Models 7

j = 1, . . . , 5

i = 1, . . . , N

α0αc αc

αi βiσα σβ

yijσc xj

Fig. 7.4 Graphical representation of a random coefficient regression model for the
growth of rats.

For a final illustration we consider the chest clinic example in Sect. ??.
Fig. 7.5 shows a directed acyclic graph with plates representing N samples
from the chest clinic network.

ν = 1, . . . , N

xνL

θL

xνS

xνB

θS

θBxνTθT

xνAθA

xνE

xνX xνD

θDθX

Fig. 7.5 A graphical representation of N samples from the chest clinic network, with
parameters unknown and marginally independent for seven of the nodes.

Here we have introduced a parameter node for each of the variables. Each
of these nodes may contain parameters for the conditional distribution of a
node given any configuration of its parents, so that, following ?, we would
write for the joint model

8 7 Graphical Models for Complex Stochastic Systems

p(x, θ) =
∏
v∈V

π(θv)

N∏
ν=1

p(xνv |xνpa(v), θv).

7.3 Inference based on Probability Propagation

If the prior distributions of the unknown parameters are concentrated on a
finite number of possibilities, i.e. the parameters are all discrete, the marginal
posterior distribution of each of these parameters can simply be obtained by
probability propagation in a Bayesian network with 7 + 8N nodes, insert-
ing the observations as observed evidence. The moral graph of this network
is shown in Fig. 7.6. This graph can be triangulated by just adding edges

ν = 1, . . . , N

xνL

θL

xνS

xνB

θS

θBxνTθT

xνAθA

xνE

xνX xνD

θDθX

Fig. 7.6 Moral and triangulated graph of N samples from the chest clinic network,
with seven unknown parameters.

between xνL and xνB and the associated junction tree would thus have 10N
cliques of size at most 4. Thus, propagation would be absolutely feasible, even
for large N .

We shall illustrate this procedure in the simple case of N = 3 where we
only introduce unknown parameters for the probability of visiting Asia and
the probability of a smoker having lung cancer, each having three possible
levels, low, medium and high. We first define the parameter nodes

> library(gRain)
> lmh <- c("low","medium","high")
> thA<- cptable(~theta_A, values =c(1,1,1), levels=lmh)

7.3 Inference based on Probability Propagation 9

> thL<- cptable(~theta_L, values =c(1,1,1), levels=lmh)
> param <- list(thA, thL)

and then specify a template for probabilities where we notice that A and L
have an extra parent

> yn <- c("yes","no")
> a <- cptable(~asia[i]|theta_A, values=c(1,99,2,98,5,95),levels=yn)
> t.a <- cptable(~tub[i]|asia[i], values=c(5,95,1,99),levels=yn)
> s <- cptable(~smoke[i], values=c(5,5), levels=yn)
> l.s <- cptable(~lung[i]|smoke[i]:theta_L,
+ values=c(5,95,1,99,1,9,1,99,1,4,1,99), levels=yn)
> b.s <- cptable(~bronc[i]|smoke[i], values=c(6,4,3,7), levels=yn)
> e.lt <- cptable(~either[i]|lung[i]:tub[i],
+ values=c(1,0,1,0,1,0,0,1),levels=yn)
> x.e <- cptable(~xray[i]|either[i], values=c(98,2,5,95), levels=yn)
> d.be <- cptable(~dysp[i]|bronc[i]:either[i],
+ values=c(9,1,7,3,8,2,1,9), levels=yn)
> plist.tmp <- list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be)

We create 3 instances of the pattern defined above. In these instance the
variable name asia[i] is replaced by asia1, asia2 and asia3 respectively.

> plate <- repeatPattern(plist.tmp, instances=1:3)

We then proceed to the specification of the full network which is displayed in
Fig. 7.7:

> plist <- compileCPT(c(param, plate))
> chestlearn <-grain(plist)
> plot(chestlearn)

theta_A

theta_L asia1

tub1

smoke1

lung1

bronc1 either1

xray1dysp1

asia2

tub2

smoke2

lung2

bronc2either2

xray2 dysp2

asia3

tub3

smoke3

lung3

bronc3either3

xray3 dysp3

Fig. 7.7 Bayesian network for the chest clinic example with two unknown parameter
nodes and two potential observations of the network. Parameters appear as nodes in
the graph.

Finally we insert evidence for three observed cases, none of whom have been
to Asia, all being smokers, one of them presenting with dyspnoea, one with
a positive X-ray, one with dyspnoea and a negative X-ray; we then query the
posterior distribution of the parameters:

10 7 Graphical Models for Complex Stochastic Systems

> chestlearn.ev<- setFinding(chestlearn,
+ nodes = c("asia1","smoke1","xray1"), c("no","yes","yes"))
> chestlearn.ev<- setFinding(chestlearn.ev,
+ nodes = c("asia2","smoke2","dysp2"), c("no","yes","yes"))
> chestlearn.ev<- setFinding(chestlearn.ev,
+ nodes = c("asia3","smoke3","dysp3","xray3"), c("no","yes","yes","no"))
> querygrain(chestlearn.ev,nodes =c("theta_A","theta_L"))

$theta_A
theta_A

low medium high
0.3504 0.3399 0.3096

$theta_L
theta_L

low medium high
0.2211 0.3099 0.4690

We see that the probabilities of visiting Asia is now more likely than before
to be low, whereas the probability of having lung cancer for a smoker is more
likely to be high.

In the special case where all cases have been completely observed, it is not
necessary to form the full network with 7 + 8N nodes, but updating can be
performed sequentially as follows.

Let p∗n(θ) denote the posterior distribution of θ given n observations
x1, . . . , xn, i.e. p∗n(θ) = p(θ |x1, . . . , xn). We then have the recursion:

p∗n(θ) ∝ p(x1, . . . , xn, θ) =
{ n∏
ν=1

p(xν | θ)
}
p(θ)

= p(xn | θ)
{ n−1∏
ν=1

p(xν | θ)
}
p(θ)

∝ p(xn | θ)p∗n−1(θ).

Hence we can incorporate evidence from the n-th observation by using the
posterior distribution from the n− 1 first observations as a prior distribution
for a network respresenting only a single case. It follows from the moral graph
in Fig. 7.6 that if all nodes in the plates are observed, the seven parameters
are conditionally independent also in the posterior distribution after n obser-
vations. If cases are incomplete, such a sequential scheme can only be used
approximately (?).

7.4 Computations using Monte Carlo Methods

In most cases the posterior distribution

π∗(θ) = p(θ|x) =
p(x|θ)π(θ)

p(x)
∝ p(x|θ)π(θ) (7.1)

7.4 Computations using Monte Carlo Methods 11

of the parameters of interest cannot be calculated or represented in a simple
fashion. This would for example be the case if the parameter nodes in Fig. 7.5
had values in a continuum and the observations of a case would be incomplete,
such as in the example given in the previous section.

In such models one will often resort to Markov chain Monte Carlo (MCMC)
methods: we cannot calculate π∗(θ) analytically but if we can generate sam-
ples θ(1), . . . , θ(M) from the distribution π∗(θ), we can do just as well.

7.4.1 Metropolis–Hastings and the Gibbs Sampler

Such samples can be generated by the Metropolis–Hastings algorithm. In the
following we change the notation slightly.

We suppose that we know p(x) only up to a normalizing constant. That is
to say, p(x) = k(x)/c, where k(x) is known but c is unknown. We partition
x into blocks, for example x = (x1, x2, x3).

We wish to generate samples x1, . . . , xM from p(x). Suppose we have a
sample xt−1 = (xt−11 , xt−12 , xt−13) and also that x1 has also been updated
to xt1 in the current iteration. The task is to update x2. To do so we need
to specify a proposal distribution h2 from which we can sample candidate
values for x2. The single component Metropolis–Hastings algorithm works as
follows:

1. Draw x2 ∼ h2(· |xt1, xt−12 , xt−13). Draw u ∼ U(0, 1).
2. Calculate acceptance probability

α = min(1,
p(x2 |xt1, xt−13)h2(xt−12 |xt1, x2, xt−13)

p(xt−12 |xt1, x
t−1
3)h2(x2 |xt1, x

t−1
2 , xt−13)

) (7.2)

3. If u < α set xt2 = x2; else set xt2 = xt−12 .

The samples x1, . . . , xM generated this way will form an ergodic Markov
chain that, under certain conditions, has p(x) as its stationary distribution
so that the expectation of any function of x can be calculated approximately
as ∫

f(x)p(x) dx = lim
M→∞

1

M

M∑
ν=1

f(xν) ≈ 1

M

M∑
ν=1

f(xν).

Note that p(x2 |xt1, xt−13) ∝ p(xt1, x2, x
t−1
3) ∝ k(xt1, x2, x

t−1
3) and therefore

the acceptance probability can be calculated even though p(x) may only be
known up to proportionality.

A special case of the single component Metropolis–Hastings algorithm is
the Gibbs–sampler : If as proposal distribution h2 we choose p(x2 |xt1, xt−13)
then the acceptance probability becomes 1 because terms cancel in 7.2. The

12 7 Graphical Models for Complex Stochastic Systems

conditional distribution of a single component X2 given all other components
(X1, X3) is known as the full conditional distribution.

For a directed graphical model, the density of full conditional distributions
can be easily identified:

f(xi |xV \i) ∝
∏
v∈V

f(xv |xpa(v))

∝ f(xi |xpa(i))
∏

v∈ch(i)

f(xv |xpa(v)) = f(xi |xbl(i)), (7.3)

x where bl(i) is the Markov blanket of node i:

bl(i) = pa(i) ∪ ch(i) ∪
{
∪v∈ch(i) pa(v) \ {i}

}
or, equivalently, the neighbours of i in the moral graph, see Sec. ??. Note that
(7.3) holds even if some of the nodes involved in the expression corresponds
to values that have been observed. To sample from the posterior distribution
of the unobserved values given the observed ones, only unobserved variables
should be updated in the Gibbs sampling cycle.

In this way, a Markov chain of pseudo-observations from all unobserved
variables is generated, and those corresponding to quantities (parameters) of
interest can be monitored.

7.4.2 Using WinBUGS via R2WinBUGS

The program WinBUGS (?) is based on the idea that the user specifies a
Bayesian graphical model based on a DAG, including the conditional dis-
tribution of every node given its parents. WinBUGS then identifies the Markov
blanket of every node and using properties of the full conditional distribu-
tions in (7.3), a sampler is automatically generated by the program. As the
name suggests, WinBUGS is available on Windows platforms only. WinBUGS

can be interfaced from R via the R2WinBUGS package (?) and to do this,
WinBUGS must be installed. R2WinBUGS works by calling WinBUGS, doing
the computations there, shutting WinBUGS down and returning control to R.

A specification of the model described in Fig. 7.3 in the BUGS language
looks as follows (notice that the dispersion of a normal distribution is param-
eterized in terms of the concentration τ where τ = σ−2):

model {

for (i in 1:N) {

Y[i] ~ dnorm(mu[i],tau)

mu[i] <- alpha + beta*(x[i] - x.bar)

}

x.bar <- mean(x[])

7.4 Computations using Monte Carlo Methods 13

alpha ~ dnorm(0, 1.0E-6)

beta ~ dnorm(0, 1.0E-6)

sigma ~ dunif(0,100)

tau <- 1/pow(sigma,2)

}

BUGS comes with a Windows interface in the program WinBUGS. To analyse
this model in R we can use the package R2WinBUGS. First we save the model
specification to a plain text file:

> cat(
+ "model {
+ for (i in 1:N) {
+ Y[i] ~ dnorm(mu[i],tau)
+ mu[i] <- alpha + beta*(x[i] - x.bar)
+ }
+ x.bar <- mean(x[])
+ alpha ~ dnorm(0, 1.0E-6)
+ beta ~ dnorm(0, 1.0E-6)
+ sigma ~ dunif(0,100)
+ tau <- 1/pow(sigma,2)
+ }",
+ file="linesModel.txt")

We specify data:

> Y <- c(1,3,3,3,5)
> x <- c(1,2,3,4,5)
> N <- 5

As the sampler must start somewhere, we specify initial values for the un-
knowns:

> p.ini <- list(alpha = 0, beta = 0, sigma = 1)

We may now ask WinBUGS for a sample from the model :

> library(R2WinBUGS)
> lines.res <-
+ bugs(data = list(Y=Y, x=x, N=N),
+ inits = list(p.ini),
+ param = c("alpha","beta","sigma"),
+ model = "linesModel.txt",
+ n.chains = 1,
+ ## Total number of samples, including burn-in:
+ n.iter = 7000,
+ ## Burn-in values; will be discarded in subsequent analyses:
+ n.burnin = 5000,
+ ## Of the non-discarded samples only every 'n.thin'th will be used.
+ n.thin = 5,
+ bugs.directory = "c:/Programs/WinBUGS14/",
+ debug = F,
+ clearWD = TRUE)

The outout lines.res contains the samples. A simple summary of the
samples is

> print(lines.res)

14 7 Graphical Models for Complex Stochastic Systems

Inference for Bugs model at "linesModel.txt", fit using WinBUGS,
1 chains, each with 7000 iterations (first 5000 discarded), n.thin = 5
n.sims = 400 iterations saved

mean sd 2.5% 25% 50% 75% 97.5%
alpha 3.0 1.0 1.7 2.7 3.0 3.3 4.6
beta 0.9 0.7 -0.1 0.6 0.8 1.0 2.3
sigma 1.5 2.1 0.5 0.7 1.0 1.5 6.2
deviance 14.4 5.3 9.0 10.8 12.8 16.4 28.5

DIC info (using the rule, pD = Dbar-Dhat)
pD = 0.2 and DIC = 14.7
DIC is an estimate of expected predictive error (lower deviance is better).

We next convert the output to a format suitable for analysis with the coda

package:

> library(coda)
> lines.coda <- as.mcmc.list(lines.res)

An summary of the posterior distrubution of the monitored parameters is
as follows:

> summary(lines.coda)

Iterations = 5001:6996
Thinning interval = 5
Number of chains = 1
Sample size per chain = 400

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha 2.980 1.037 0.0518 0.0525
beta 0.887 0.735 0.0367 0.0465
deviance 14.425 5.307 0.2654 0.3996
sigma 1.534 2.139 0.1070 0.1536

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha 1.708 2.708 3.023 3.28 4.56
beta -0.065 0.598 0.813 1.04 2.35
deviance 9.046 10.837 12.775 16.41 28.47
sigma 0.459 0.740 1.002 1.49 6.16

As the observations are very informative, the posterior distributions of
the regression parameters α and β are similar to the sampling distributions
obtained from a standard linear regression analysis:

> summary(lm(Y~I(x-mean(x))))

Call:
lm(formula = Y ~ I(x - mean(x)))

Residuals:
1 2 3 4 5

-4.00e-01 8.00e-01 4.84e-17 -8.00e-01 4.00e-01

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.000 0.327 9.19 0.0027 **
I(x - mean(x)) 0.800 0.231 3.46 0.0405 *

7.5 Various 15

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 0.73 on 3 degrees of freedom
Multiple R-squared: 0.8, Adjusted R-squared: 0.733
F-statistic: 12 on 1 and 3 DF, p-value: 0.0405

A traceplot (see Fig. 7.8) of the samples is useful for visual inspection
of indications that the sampler has not converged. There appears to be no
problem here:

> library(coda)
> par(mfrow=c(2,2))
> traceplot(lines.coda)

5000 5500 6000 6500 7000

−
10

−
5

0
5

Iterations

Trace of alpha

5000 5500 6000 6500 7000

0
2

4
6

8

Iterations

Trace of beta

5000 5500 6000 6500 7000

10
20

30
40

Iterations

Trace of deviance

5000 5500 6000 6500 7000

0
5

15
25

Iterations

Trace of sigma

Fig. 7.8 A traceplot of the samples produced by BUGS is a useful tool for visual
inspection of indications of that the sampler has not converged.

A plot of the marginal posterior densities (see Fig. 7.9) provides a supple-
ment to the numeric summaries shown above:

> par(mfrow=c(2,2))
> densplot(lines.coda)

7.5 Various

An alternative to WinBUGS is OpenBUGS (?). The two programs have the same
genesis and the model specification languages are very similar. OpenBUGS can

16 7 Graphical Models for Complex Stochastic Systems

−10 −5 0 5

0.
0

0.
4

0.
8

N = 400 Bandwidth = 0.1363

Density of alpha

0 2 4 6 8

0.
0

0.
4

0.
8

N = 400 Bandwidth = 0.1065

Density of beta

10 20 30 40 50

0.
0

0.
4

0.
8

N = 400 Bandwidth = 1.329

Density of deviance

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

N = 400 Bandwidth = 0.1798

Density of sigma

Fig. 7.9 A plot of each posterior marginal distribution provides a provides a sup-
plement to the numeric summary statistics.

be interfaced from R via the BRugs package and OpenBUGS / BRugs is
available for all platforms. The modus operandi of BRugs is fundamentally
different from that of WinBUGS: A sampler created using BRugs remains
alive in the sense that one may call the sampler repeatedly from within R.
Yet another alternative is package rjags which interfaces the JAGS program;
this must be installed separately and is available for all platforms.

LIST OF CORRECTIONS 17

List of Corrections

