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Parameter θ, data X = x , likelihood

L(θ | x) ∝ p(x | θ).

Express knowledge about θ through prior distribution π on θ.
Inference about θ from x is then represented through posterior
distribution π∗(θ) = p(θ | x). Then, from Bayes’ formula

π∗(θ) = p(x | θ)π(θ)/p(x) ∝ L(θ | x)π(θ)

so the likelihood function is equal to the density of the posterior
w.r.t. the prior modulo a constant.
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Represent statistical models as Bayesian networks with parameters
included as nodes, i.e. for expressions as

p(xv | xpa(v), θv )

include θv as additional parent of v . In addition, represent data
explicitly in network using plates.

Then Bayesian inference about θ can in principle be calculated by
probability propagation as in general Bayesian networks.

This is true for θv discrete. For θ continuous, we must develop
other computational techniques.
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Chest clinic with parameters and plate indicating repeated cases.
Steffen Lauritzen, University of Oxford Bayesian Graphical Models



Bayesian inference
Bayesian graphical models

Markov chain Monte Carlo methods

Simple examples
WinBUGS examples

Standard repeated samples

. . . . . . 

As for a naive Bayes expert system, just let D = θ and Xi = Fi
represent data.

Then π∗(θ) = P(θ |X1 = x1, . . . ,Xm = Xm) is found by standard
updating, using probability propagation if θ is discrete.
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Simple sampling represented with a plate

ν = 1, . . . , 5
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Bernoulli experiments

Data X1 = x1, . . . ,Xn = xn independent and Bernoulli distributed
with parameter θ, i.e.

P(Xi = 1 | θ) = 1− P(Xi = 0) = θ.

Represent as a Bayesian network with θ as only parent to all nodes
xi , i = 1, . . . , n. Use a beta prior:

π(θ | a, b) ∝ θa−1(1− θ)b−1.

If we let x =
∑

xi , we get the posterior:

π∗(θ) ∝ θx(1− θ)n−xθa−1(1− θ)b−1

= θx+a−1(1− θ)n−x+b−1

So the posterior is also beta with parameters (a + x , b + n − x).
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Bayesian variant of simple Gaussian graphical model

ν = 1, . . . ,N
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Parameters and repeated observations must be explicitly
represented in the Bayesian model for X1⊥⊥X2 |X3,K . Here K
follows a so-called hyper Markov prior, with further independence
relations among the elements of K .

Steffen Lauritzen, University of Oxford Bayesian Graphical Models



Bayesian inference
Bayesian graphical models

Markov chain Monte Carlo methods

Simple examples
WinBUGS examples

Linear regression

For the linear regression model

Yi ∼ N(µi , σ
2) with µi = α + βxi for i = 1, . . . ,N.

we must also specify prior distributions for α, β, σ:

i = 1, . . . ,N

i = 1, . . . ,N
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Linear regression

for(i IN 1 : N)

sigma

taubetaalpha

mu[i]

Y[i]

 
model

{

for( i in 1 : N ) {

Y[i] ~ dnorm(mu[i],tau)

mu[i] <- alpha + beta * (x[i] - xbar)

}

tau ~ dgamma(0.001,0.001) sigma <- 1 / sqrt(tau)

alpha ~ dnorm(0.0,1.0E-6)

beta ~ dnorm(0.0,1.0E-6)

}
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Data and BUGS model for pumps

The number of failures Xi is assumed to follow a Poisson
distribution with parameter θi ti , i = 1, . . . , 10
where θi is the failure rate for pump i and ti is the length of
operation time of the pump (in 1000s of hours). The data are
shown below.

Pump 1 2 3 4 5 6 7 8 9 10
ti 94.5 15.7 62.9 126 5.24 31.4 1.05 1.05 2.01 10.5
xi 5 1 5 14 3 19 1 1 4 22

A gamma prior distribution is adopted for the failure rates:
θi ∼ Γ(α, β), i = 1, . . . , 10
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Gamma model for pumpdata

for(i IN 1 : N)
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Failure of 10 power plant pumps.
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BUGS program for pumps

With suitable priors the program becomes

model

{

for (i in 1 : N) {

theta[i] ~ dgamma(alpha, beta)

lambda[i] <- theta[i] * t[i]

x[i] ~ dpois(lambda[i])

}

alpha ~ dexp(1)

beta ~ dgamma(0.1, 1.0)

}
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Description of rat data

30 young rats have weights measured weekly for five weeks. The
observations Yij are the weights of rat i measured at age xj .
The model is essentially a random effects linear growth curve:

Yij ∼ N (αi + βi (xj − x̄), τ−1c )

and
αi ∼ N (αc , τ

−1
α ), βi ∼ N (βc , τ

−1
β )

where x̄ = 22, and τ represents the precision (inverse variance) of
a normal distribution. Interest particularly focuses on the intercept
at zero time (birth), denoted α0 = αc − βc x̄ .
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Growth of rats

for(j IN 1 : T)
for(i IN 1 : N)

sigma

tau.c
x[j]

Y[i, j]

mu[i, j]

beta[i]alpha[i]

beta.taubeta.calpha0alpha.calpha.tau

 

Growth of 30 young rats.
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When exact computation is infeasible, Markov chain Monte Carlo
(MCMC) methods are used.
An MCMC method for the target distribution π∗ on X = XV

constructs a Markov chain X 0,X 1, . . . ,X k , . . . with π∗ as
equilibrium distribution.
For the method to be useful, π∗ must be the unique equilibrium,
and the Markov chain must be ergodic so that for all relevant A

π∗(A) = lim
n→∞

π∗n(A) = lim
n→∞

1

n

m+n∑
i=m+1

χA(X i )

where χA is the indicator function of the set A.
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Suppose we have sampled X 1 = x1, . . . ,X n = xk−1 and we next
wish to sample X k . We choose a proposal kernel gk(y | z) and
proceed as:

1. Draw y ∼ gk(· | xk−1). Draw u ∼ U(0, 1).

2. Calculate acceptance probability

α = min

{
1,

π∗(y)gk(xk−1 | y)

π∗(xk−1)gk(y | xk−1)

}
(1)

3. If u < α set xk = y; else set xk = xk−1.

The samples x1, . . . , xM generated this way will form an ergodic
Markov chain that, under certain conditions, has π∗(x) as its
stationary distribution.
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A particularly simple special case is the single site Gibbs sampler
where the update distributions all have the form of so-called full
conditional distributions

1. Enumerate V = {1, 2, . . . , |V |}
2. choose starting value x0 = x01 , . . . , x

0
|V |.

3. Update now x0 to x1 by replacing x0i with x1i for
i = 1, . . . , |V | , where x1i is chosen from ‘the full conditionals’

π∗(Xi | x11 , . . . , x1i−1, x0i+1, . . . x
0
|V |).

4. Continue similarly to update xk to xk+1 and so on.
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The Gibbs sampler is just the Metropolis–Hastings algorithm with
full conditionals as proposals.

For then the acceptance probabilities in (1) become

α = min

{
1,

π∗(yi | xk−1V \i )π∗(xk−1)

π∗(xk−1i | xk−1V \i )π∗(yi , x
k−1
V \i )

}

= min

{
1,

π∗(yi , x
k−1
V \i )π∗(xk−1)

π∗(xk−1i , xk−1V \i )π∗(yi , x
k−1
V \i )

}
= 1.
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Properties of Gibbs sampler

With positive joint target density π∗(x) > 0, the Gibbs sampler is
ergodic with π∗ as the unique equilibrium.

In this case the distribution of X n converges to π∗ for n tending to
infinity.

Note that if the target is the conditional distribution

π∗(xA) = f (xA |XV \A = x∗V \A),

only sites in A should be updated:

The full conditionals of the conditional distribution are unchanged
for unobserved sites.
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For a directed graphical model, the density of full conditional
distributions are:

f (xi | xV \i ) ∝
∏
v∈V

f (xv | xpa(v))

∝ f (xi | xpa(i))
∏

v∈ch(i)

f (xv | xpa(v))

= f (xi | xbl(i)),

x where bl(i) is the Markov blanket of node i :

bl(i) = pa(i) ∪ ch(i) ∪
{
∪v∈ch(i) pa(v) \ {i}

}
.

Note that the Markov blanket is just the neighbours of i in the
moral graph: bl(i) = nem(i).
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Moral graph of chest clinic example.
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There are many ways of sampling from a density f which is known
up to normalization, i.e. f (x) ∝ h(x).

For example, one can use an envelope g(x) ≥ Mh(x), where g(x)
is a known density and then proceeding as follows:

1. Choose X = x from distribution with density g

2. Choose U = u uniform on the unit interval.

3. If u > Mh(x)/g(x), then reject x and repeat step 1, else
return x .

The value returned will have density f .
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