Markov properties for undirected graphs

Steffen Lauritzen, University of Oxford

Graphical Models, Lecture 2, Michaelmas Term 2010

October 14, 2010

イロト イヨト イヨト イヨト

Formal definition Fundamental properties

Random variables X and Y are *conditionally independent* given the random variable Z if

$$\mathcal{L}(X \mid Y, Z) = \mathcal{L}(X \mid Z).$$

We then write $X \perp Y \mid Z$ (or $X \perp P Y \mid Z$) Intuitively: Knowing Z renders Y *irrelevant* for predicting X. Factorisation of densities:

$$\begin{array}{rcl} X \perp\!\!\!\!\perp Y \mid\! Z & \iff & f(x,y,z)f(z) = f(x,z)f(y,z) \\ & \iff & \exists a,b:f(x,y,z) = a(x,z)b(y,z). \end{array}$$

イロト イポト イヨト イヨト

Formal definition Fundamental properties

For random variables X, Y, Z, and W it holds

(C1) If
$$X \perp \!\!\!\perp Y \mid Z$$
 then $Y \perp \!\!\!\perp X \mid Z$;
(C2) If $X \perp \!\!\!\perp Y \mid Z$ and $U = g(Y)$, then $X \perp \!\!\!\perp U \mid Z$;
(C3) If $X \perp \!\!\!\perp Y \mid Z$ and $U = g(Y)$, then $X \perp \!\!\!\perp Y \mid (Z, U)$;
(C4) If $X \perp \!\!\!\perp Y \mid Z$ and $X \perp \!\!\!\perp W \mid (Y, Z)$, then
 $X \perp \!\!\!\perp (Y, W) \mid Z$;

If density w.r.t. product measure f(x, y, z, w) > 0 also (C5) If $X \perp Y \mid (Z, W)$ and $X \perp Z \mid (Y, W)$ then $X \perp (Y, Z) \mid W$.

소리가 소문가 소문가 소문가

Graphoids and semi-graphoids Examples

Conditional independence can be seen as encoding abstract irrelevance. With the interpretation: *Knowing C*, *A is irrelevant for learning B*, (C1)-(C4) translate into:

- (I1) If, knowing C, learning A is irrelevant for learning B, then B is irrelevant for learning A;
- (I2) If, knowing C, learning A is irrelevant for learning B, then A is irrelevant for learning any part D of B;
- (I3) If, knowing C, learning A is irrelevant for learning B, it remains irrelevant having learnt any part D of B;
- (I4) If, knowing C, learning A is irrelevant for learning B and, having also learnt A, D remains irrelevant for learning B, then both of A and D are irrelevant for learning B.

The property analogous to (C5) is slightly more subtle and not generally obvious. Also the symmetry (C1) is a special property of *probabilistic conditional independence*, rather than of general irrelevance.

Graphoids and semi-graphoids Examples

・ロト ・回ト ・ヨト ・ヨト

Graphoid axioms

Ternary relation \perp_{σ} is *graphoid* if for all disjoint subsets A, B, C, and D of V:

(S1) if
$$A \perp_{\sigma} B \mid C$$
 then $B \perp_{\sigma} A \mid C$;
(S2) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} D \mid C$;
(S3) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} B \mid (C \cup D)$;
(S4) if $A \perp_{\sigma} B \mid C$ and $A \perp_{\sigma} D \mid (B \cup C)$, then
 $A \perp_{\sigma} (B \cup D) \mid C$;
(S5) if $A \perp_{\sigma} B \mid (C \cup D)$ and $A \perp_{\sigma} C \mid (B \cup D)$ then
 $A \perp_{\sigma} (B \cup C) \mid D$.

Semigraphoid if only (S1)–(S4) holds.

Graphoids and semi-graphoids Examples

イロト イポト イヨト イヨト

Separation in undirected graphs

Let $\mathcal{G} = (V, E)$ be finite and simple undirected graph (no self-loops, no multiple edges).

For subsets A, B, S of V, let $A \perp_{\mathcal{G}} B \mid S$ denote that S separates A from B in \mathcal{G} , i.e. that all paths from A to B intersect S.

Fact: The relation $\perp_{\mathcal{G}}$ on subsets of V is a graphoid.

This fact is the reason for choosing the name 'graphoid' for such separation relations.

Graphoids and semi-graphoids Examples

・ロン ・回と ・ヨン・

Systems of random variables

For a system V of labeled random variables $X_v, v \in V$, we use the shorthand

$$A \perp\!\!\!\perp B \mid C \iff X_A \perp\!\!\!\perp X_B \mid X_C,$$

where $X_A = (X_v, v \in A)$ denotes the variables with labels in A.

The properties (C1)–(C4) imply that $\perp _$ satisfies the semi-graphoid axioms for such a system, and the graphoid axioms if the joint density of the variables is strictly positive.

Graphoids and semi-graphoids Examples

<ロ> (日) (日) (日) (日) (日)

Geometric orthogonality

Let L, M, and N be linear subspaces of a Hilbert space H and define

$$L\perp M\,|\,N\iff (L\ominus N)\perp (M\ominus N),$$

where $L \ominus N = L \cap N^{\perp}.L$ and M are said to *meet orthogonally in* N.

(O1) If
$$L \perp M \mid N$$
 then $M \perp L \mid N$;

(O2) If $L \perp M \mid N$ and U is a linear subspace of L, then $U \perp M \mid N$;

(O3) If $L \perp M \mid N$ and U is a linear subspace of M, then $L \perp M \mid (N + U)$;

(O4) If $L \perp M \mid N$ and $L \perp R \mid (M + N)$, then $L \perp (M + R) \mid N$.

The analogue of (C5) does not hold in general.

Definitions Structural relations among Markov properties

イロト イヨト イヨト イヨト

 $\mathcal{G} = (V, E)$ simple undirected graph; \perp_{σ} (semi)graphoid relation. Say \perp_{σ} satisfies

(P) the pairwise Markov property if

$$\alpha \not\sim \beta \Rightarrow \alpha \perp_{\sigma} \beta \mid V \setminus \{\alpha, \beta\};$$

(L) the local Markov property if

$$\forall \alpha \in V : \alpha \perp_{\sigma} V \setminus \mathsf{cl}(\alpha) \mid \mathsf{bd}(\alpha);$$

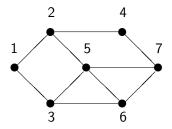
(G) the global Markov property if

$$A \perp_{\mathcal{G}} B \mid S \Rightarrow A \perp_{\sigma} B \mid S.$$

Definitions Structural relations among Markov properties

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Pairwise Markov property

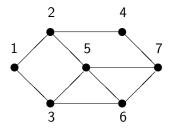


Any non-adjacent pair of random variables are conditionally independent given the remaning. For example, $1 \perp_{\sigma} 5 \mid \{2, 3, 4, 6, 7\}$ and $4 \perp_{\sigma} 6 \mid \{1, 2, 3, 5, 7\}$.

Definitions Structural relations among Markov properties

・ロト ・回ト ・ヨト ・ヨト

Local Markov property



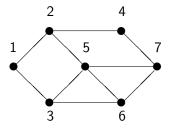
Every variable is conditionally independent of the remaining, given its neighbours.

For example, $5 \perp_{\sigma} \{1,4\} \mid \{2,3,6,7\}$ and $7 \perp_{\sigma} \{1,2,3\} \mid \{4,5,6\}$.

Definitions Structural relations among Markov properties

イロン イヨン イヨン イヨン

Global Markov property



To find conditional independence relations, one should look for separating sets, such as $\{2,3\}$, $\{4,5,6\}$, or $\{2,5,6\}$ For example, it follows that $1 \perp_{\sigma} 7 | \{2,5,6\}$ and $2 \perp_{\sigma} 6 | \{3,4,5\}$.

Definitions Structural relations among Markov properties

イロト イポト イヨト イヨト

For any semigraphoid it holds that

$$(\mathsf{G}) \Rightarrow (\mathsf{L}) \Rightarrow (\mathsf{P})$$

If \perp_{σ} satisfies graphoid axioms it further holds that

$$(\mathsf{P}) \Rightarrow (\mathsf{G})$$

so that in the graphoid case

$$(\mathsf{G})\iff (\mathsf{L})\iff (\mathsf{P}).$$

The latter holds in particular for $\perp \perp$, when f(x) > 0.

Definitions Structural relations among Markov properties

(ロ) (同) (E) (E) (E)

$(\mathsf{G}) \Rightarrow (\mathsf{L}) \Rightarrow (\mathsf{P})$

(G) implies (L) because $bd(\alpha)$ separates α from $V \setminus cl(\alpha)$. Assume (L). Then $\beta \in V \setminus cl(\alpha)$ because $\alpha \not\sim \beta$. Thus

$$\mathsf{bd}(\alpha) \cup ((V \setminus \mathsf{cl}(\alpha)) \setminus \{\beta\}) = V \setminus \{\alpha, \beta\},\$$

Hence by (L) and (S3) we get that

$$\alpha \perp_{\sigma} (V \setminus \mathsf{cl}(\alpha)) \mid V \setminus \{\alpha, \beta\}.$$

(S2) then gives $\alpha \perp_{\sigma} \beta \mid V \setminus \{\alpha, \beta\}$ which is (P).

Definitions Structural relations among Markov properties

$(\mathsf{P}) \Rightarrow (\mathsf{G})$ for graphoids

Assume (P) and $A \perp_{\mathcal{G}} B \mid S$. We must show $A \perp_{\sigma} B \mid S$.

Wlog assume A and B non-empty. Proof is reverse induction on n = |S|.

If n = |V| - 2 then A and B are singletons and (P) yields $A \perp_{\sigma} B \mid S$ directly.

Assume |S| = n < |V| - 2 and conclusion established for |S| > n: First assume $V = A \cup B \cup S$. Then either A or B has at least two elements, say A. If $\alpha \in A$ then $B \perp_{\mathcal{G}} (A \setminus \{\alpha\}) | (S \cup \{\alpha\})$ and also $\alpha \perp_{\mathcal{G}} B | (S \cup A \setminus \{\alpha\})$ (as $\perp_{\mathcal{G}}$ is a semi-graphoid). Thus by the induction hypothesis

$$(A \setminus \{\alpha\}) \perp_{\sigma} B \mid (S \cup \{\alpha\}) \text{ and } \{\alpha\} \perp_{\sigma} B \mid (S \cup A \setminus \{\alpha\}).$$

Now (S5) gives $A \perp_{\sigma} B \mid S$.

Definitions Structural relations among Markov properties

$(\mathsf{P}) \Rightarrow (\mathsf{G})$ for graphoids, continued

For $A \cup B \cup S \subset V$ we choose $\alpha \in V \setminus (A \cup B \cup S)$. Then $A \perp_{\mathcal{G}} B \mid (S \cup \{\alpha\})$ and hence the induction hypothesis yields $A \perp_{\sigma} B \mid (S \cup \{\alpha\})$. Further, either $A \cup S$ separates B from $\{\alpha\}$ or $B \cup S$ separates A

from $\{\alpha\}$. Assuming the former gives $\alpha \perp_{\sigma} B \mid A \cup S$.

Using (S5) we get $(A \cup \{\alpha\}) \perp_{\sigma} B \mid S$ and from (S2) we derive that $A \perp_{\sigma} B \mid S$.

The latter case is similar.

Definition Factorization example Factorization theorem

Assume density f w.r.t. product measure on \mathcal{X} . For $a \subseteq V$, $\psi_a(x)$ denotes a function which depends on x_a only, i.e.

$$x_{a} = y_{a} \Rightarrow \psi_{a}(x) = \psi_{a}(y).$$

We can then write $\psi_a(x) = \psi_a(x_a)$ without ambiguity. The distribution of X factorizes w.r.t. \mathcal{G} or satisfies (F) if

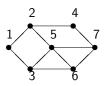
$$f(x) = \prod_{a \in \mathcal{A}} \psi_a(x)$$

where \mathcal{A} are *complete* subsets of \mathcal{G} .

Complete subsets of a graph are sets with all elements pairwise neighbours.

・ロン ・回と ・ヨン・

Definition Factorization example Factorization theorem



The *cliques* of this graph are the maximal complete subsets $\{1,2\}$, $\{1,3\}$, $\{2,4\}$, $\{2,5\}$, $\{3,5,6\}$, $\{4,7\}$, and $\{5,6,7\}$. A complete set is any subset of these sets.

The graph above corresponds to a factorization as

$$\begin{aligned} f(x) &= \psi_{12}(x_1, x_2)\psi_{13}(x_1, x_3)\psi_{24}(x_2, x_4)\psi_{25}(x_2, x_5) \\ &\times \psi_{356}(x_3, x_5, x_6)\psi_{47}(x_4, x_7)\psi_{567}(x_5, x_6, x_7). \end{aligned}$$

イロン イヨン イヨン イヨン

Definition Factorization example Factorization theorem

Let (F) denote the property that f factorizes w.r.t. \mathcal{G} and let (G), (L) and (P) denote Markov properties w.r.t. $\perp \!\!\!\perp$. It then holds that

 $(\mathsf{F}) \Rightarrow (\mathsf{G})$

and further: If f(x) > 0 for all x, $(P) \Rightarrow (F)$.

The former of these is a simple direct consequence of the factorization whereas the second implication is more subtle and known as the *Hammersley–Clifford Theorem*.

Thus in the case of positive density (but typically only then), *all the properties coincide:*

$$(\mathsf{F})\iff (\mathsf{G})\iff (\mathsf{L})\iff (\mathsf{P}).$$

イロト イポト イヨト イヨト