Markov properties for undirected graphs

Steffen Lauritzen, University of Oxford
Graphical Models, Lecture 2, Michaelmas Term 2010

October 14, 2010

Random variables X and Y are conditionally independent given the random variable Z if

$$
\mathcal{L}(X \mid Y, Z)=\mathcal{L}(X \mid Z)
$$

We then write $X \Perp Y \mid Z\left(\right.$ or $\left.X \Perp_{P} Y \mid Z\right)$
Intuitively:
Knowing Z renders Y irrelevant for predicting X.
Factorisation of densities:

$$
\begin{aligned}
X \Perp Y \mid Z & \Longleftrightarrow f(x, y, z) f(z)=f(x, z) f(y, z) \\
& \Longleftrightarrow \exists a, b: f(x, y, z)=a(x, z) b(y, z)
\end{aligned}
$$

For random variables X, Y, Z, and W it holds (C1) If $X \Perp Y \mid Z$ then $Y \Perp X \mid Z$;
(C2) If $X \Perp Y \mid Z$ and $U=g(Y)$, then $X \Perp U \mid Z$;
(C3) If $X \Perp Y \mid Z$ and $U=g(Y)$, then $X \Perp Y \mid(Z, U)$;
(C4) If $X \Perp Y \mid Z$ and $X \Perp W \mid(Y, Z)$, then $X \Perp(Y, W) \mid Z$;
If density w.r.t. product measure $f(x, y, z, w)>0$ also
(C5) If $X \Perp Y \mid(Z, W)$ and $X \Perp Z \mid(Y, W)$ then $X \Perp(Y, Z) \mid W$.

Conditional independence can be seen as encoding abstract irrelevance. With the interpretation: Knowing C, A is irrelevant for learning $B,(\mathrm{C} 1)-(\mathrm{C} 4)$ translate into:
(I1) If, knowing C, learning A is irrelevant for learning B, then B is irrelevant for learning A;
(I2) If, knowing C, learning A is irrelevant for learning B, then A is irrelevant for learning any part D of B;
(I3) If, knowing C, learning A is irrelevant for learning B, it remains irrelevant having learnt any part D of B;
(I4) If, knowing C, learning A is irrelevant for learning B and, having also learnt A, D remains irrelevant for learning B, then both of A and D are irrelevant for learning B.
The property analogous to (C5) is slightly more subtle and not generally obvious. Also the symmetry (C1) is a special property of probabilistic conditional independence, rather than of general irrelevance.

Graphoid axioms

Ternary relation \perp_{σ} is graphoid if for all disjoint subsets A, B, C, and D of V :
(S1) if $A \perp_{\sigma} B \mid C$ then $B \perp_{\sigma} A \mid C$;
(S2) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} D \mid C$;
(S3) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} B \mid(C \cup D)$;
(S4) if $A \perp_{\sigma} B \mid C$ and $A \perp_{\sigma} D \mid(B \cup C)$, then
$A \perp_{\sigma}(B \cup D) \mid C$;
(S5) if $A \perp_{\sigma} B \mid(C \cup D)$ and $A \perp_{\sigma} C \mid(B \cup D)$ then $A \perp_{\sigma}(B \cup C) \mid D$.
Semigraphoid if only (S1)-(S4) holds.

Separation in undirected graphs

Let $\mathcal{G}=(V, E)$ be finite and simple undirected graph (no self-loops, no multiple edges).
For subsets A, B, S of V, let $A \perp_{\mathcal{G}} B \mid S$ denote that S separates A from B in \mathcal{G}, i.e. that all paths from A to B intersect S.
Fact: The relation $\perp_{\mathcal{G}}$ on subsets of V is a graphoid.
This fact is the reason for choosing the name 'graphoid' for such separation relations.

Systems of random variables

For a system V of labeled random variables $X_{v}, v \in V$, we use the shorthand

$$
A \Perp B\left|C \Longleftrightarrow X_{A} \Perp X_{B}\right| X_{C},
$$

where $X_{A}=\left(X_{v}, v \in A\right)$ denotes the variables with labels in A.
The properties (C1)-(C4) imply that \Perp satisfies the semi-graphoid axioms for such a system, and the graphoid axioms if the joint density of the variables is strictly positive.

Geometric orthogonality

Let L, M, and N be linear subspaces of a Hilbert space H and define

$$
L \perp M \mid N \Longleftrightarrow(L \ominus N) \perp(M \ominus N)
$$

where $L \ominus N=L \cap N^{\perp} . L$ and M are said to meet orthogonally in N.
(O1) If $L \perp M \mid N$ then $M \perp L \mid N$;
(O2) If $L \perp M \mid N$ and U is a linear subspace of L, then $U \perp M \mid N$;
(O3) If $L \perp M \mid N$ and U is a linear subspace of M, then $L \perp M \mid(N+U) ;$
(O4) If $L \perp M \mid N$ and $L \perp R \mid(M+N)$, then $L \perp(M+R) \mid N$.
The analogue of (C5) does not hold in general.
$\mathcal{G}=(V, E)$ simple undirected graph; \perp_{σ} (semi)graphoid relation.
Say \perp_{σ} satisfies
(P) the pairwise Markov property if

$$
\alpha \nsim \beta \Rightarrow \alpha \perp_{\sigma} \beta \mid V \backslash\{\alpha, \beta\} ;
$$

(L) the local Markov property if

$$
\forall \alpha \in V: \alpha \perp_{\sigma} V \backslash \mathrm{cl}(\alpha) \mid \operatorname{bd}(\alpha)
$$

(G) the global Markov property if

$$
A \perp_{\mathcal{G}} B\left|S \Rightarrow A \perp_{\sigma} B\right| S .
$$

Pairwise Markov property

Any non-adjacent pair of random variables are conditionally independent given the remaning.
For example, $1 \perp_{\sigma} 5 \mid\{2,3,4,6,7\}$ and $4 \perp_{\sigma} 6 \mid\{1,2,3,5,7\}$.

Local Markov property

Every variable is conditionally independent of the remaining, given its neighbours.
For example, $5 \perp_{\sigma}\{1,4\} \mid\{2,3,6,7\}$ and $7 \perp_{\sigma}\{1,2,3\} \mid\{4,5,6\}$.

Global Markov property

To find conditional independence relations, one should look for separating sets, such as $\{2,3\}$, $\{4,5,6\}$, or $\{2,5,6\}$ For example, it follows that $1 \perp_{\sigma} 7 \mid\{2,5,6\}$ and $2 \perp_{\sigma} 6 \mid\{3,4,5\}$.

For any semigraphoid it holds that

$$
(\mathrm{G}) \Rightarrow(\mathrm{L}) \Rightarrow(\mathrm{P})
$$

If \perp_{σ} satisfies graphoid axioms it further holds that

$$
(\mathrm{P}) \Rightarrow(\mathrm{G})
$$

so that in the graphoid case

$$
(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{P})
$$

The latter holds in particular for \Perp, when $f(x)>0$.

$(\mathrm{G}) \Rightarrow(\mathrm{L}) \Rightarrow(\mathrm{P})$

(G) implies (L) because $\mathrm{bd}(\alpha)$ separates α from $V \backslash \mathrm{cl}(\alpha)$. Assume (L). Then $\beta \in V \backslash \mathrm{cl}(\alpha)$ because $\alpha \nsim \beta$. Thus

$$
\operatorname{bd}(\alpha) \cup((V \backslash \mathrm{cl}(\alpha)) \backslash\{\beta\})=V \backslash\{\alpha, \beta\}
$$

Hence by (L) and (S3) we get that

$$
\alpha \perp_{\sigma}(V \backslash \mathrm{cl}(\alpha)) \mid V \backslash\{\alpha, \beta\} .
$$

(S2) then gives $\alpha \perp_{\sigma} \beta \mid V \backslash\{\alpha, \beta\}$ which is (P).

$(P) \Rightarrow(G)$ for graphoids

Assume (P) and $A \perp_{\mathcal{G}} B \mid S$. We must show $A \perp_{\sigma} B \mid S$.
Wlog assume A and B non-empty. Proof is reverse induction on $n=|S|$.
If $n=|V|-2$ then A and B are singletons and (P) yields
$A \perp_{\sigma} B \mid S$ directly.
Assume $|S|=n<|V|-2$ and conclusion established for $|S|>n$: First assume $V=A \cup B \cup S$. Then either A or B has at least two elements, say A. If $\alpha \in A$ then $B \perp_{\mathcal{G}}(A \backslash\{\alpha\}) \mid(S \cup\{\alpha\})$ and also $\alpha \perp_{\mathcal{G}} B \mid(S \cup A \backslash\{\alpha\})$ (as $\perp_{\mathcal{G}}$ is a semi-graphoid). Thus by the induction hypothesis

$$
(A \backslash\{\alpha\}) \perp_{\sigma} B \mid(S \cup\{\alpha\}) \text { and }\{\alpha\} \perp_{\sigma} B \mid(S \cup A \backslash\{\alpha\})
$$

Now (S5) gives $A \perp_{\sigma} B \mid S$.

$(\mathrm{P}) \Rightarrow(\mathrm{G})$ for graphoids, continued

For $A \cup B \cup S \subset V$ we choose $\alpha \in V \backslash(A \cup B \cup S)$. Then $A \perp_{\mathcal{G}} B \mid(S \cup\{\alpha\})$ and hence the induction hypothesis yields $A \perp_{\sigma} B \mid(S \cup\{\alpha\})$.
Further, either $A \cup S$ separates B from $\{\alpha\}$ or $B \cup S$ separates A from $\{\alpha\}$. Assuming the former gives $\alpha \perp_{\sigma} B \mid A \cup S$.
Using (S5) we get $(A \cup\{\alpha\}) \perp_{\sigma} B \mid S$ and from (S2) we derive that $A \perp_{\sigma} B \mid S$.
The latter case is similar.

Assume density f w.r.t. product measure on \mathcal{X}.
For $a \subseteq V, \psi_{a}(x)$ denotes a function which depends on x_{a} only, i.e.

$$
x_{a}=y_{a} \Rightarrow \psi_{a}(x)=\psi_{a}(y)
$$

We can then write $\psi_{a}(x)=\psi_{a}\left(x_{a}\right)$ without ambiguity.
The distribution of X factorizes w.r.t. \mathcal{G} or satisfies (F) if

$$
f(x)=\prod_{a \in \mathcal{A}} \psi_{a}(x)
$$

where \mathcal{A} are complete subsets of \mathcal{G}.
Complete subsets of a graph are sets with all elements pairwise neighbours.

The cliques of this graph are the maximal complete subsets $\{1,2\}$, $\{1,3\},\{2,4\},\{2,5\},\{3,5,6\},\{4,7\}$, and $\{5,6,7\}$. A complete set is any subset of these sets.
The graph above corresponds to a factorization as

$$
\begin{aligned}
f(x) & =\psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{25}\left(x_{2}, x_{5}\right) \\
& \times \psi_{356}\left(x_{3}, x_{5}, x_{6}\right) \psi_{47}\left(x_{4}, x_{7}\right) \psi_{567}\left(x_{5}, x_{6}, x_{7}\right) .
\end{aligned}
$$

Let (F) denote the property that f factorizes w.r.t. \mathcal{G} and let (G), (L) and (P) denote Markov properties w.r.t. \Perp. It then holds that

$$
(F) \Rightarrow(G)
$$

and further: If $f(x)>0$ for all $x,(P) \Rightarrow(F)$.
The former of these is a simple direct consequence of the factorization whereas the second implication is more subtle and known as the Hammersley-Clifford Theorem.
Thus in the case of positive density (but typically only then), all the properties coincide:

$$
(\mathrm{F}) \Longleftrightarrow(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{P}) .
$$

