
Chordal graphs and junction trees
Probability propagation

Probability Propagation

Steffen Lauritzen, University of Oxford

Graphical Models, Lecture 12, Michaelmas Term 2010

November 19, 2010

Steffen Lauritzen, University of Oxford Probability Propagation



Chordal graphs and junction trees
Probability propagation

Characterizing chordal graphs

The following are equivalent for any undirected graph G.

(i) G is chordal;

(ii) G is decomposable;

(iii) All prime components of G are cliques;

(iv) G admits a perfect numbering;

(v) Every minimal (α, β)-separator are complete;

(vi) Cliques of G can be arranged in a junction tree.
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Algorithms associated with chordality

Maximum Cardinality Search (MCS) identifies whether a graph is
chordal or not.

If a graph G is chordal, MCS yields a perfect numbering of the
vertices. In addition it finds the cliques of G:

From an MCS numbering V = {1, . . . , |V |}, let

Bλ = bd(λ) ∩ {1, . . . , λ− 1}

and πλ = |Bλ|. A ladder vertex is either λ = |V | or one with
πλ+1 < πλ + 1. Let Λ be the set of ladder vertices.

The cliques are Cλ = {λ} ∪ Bλ, λ ∈ Λ.
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Junction tree

Let A be a collection of finite subsets of a set V . A junction tree
T of sets in A is an undirected tree with A as a vertex set,
satisfying the junction tree property:

If A,B ∈ A and C is on the unique path in T between A
and B it holds that A ∩ B ⊂ C .

If the sets in A are pairwise incomparable, they can be arranged in
a junction tree if and only if A = C where C are the cliques of a
chordal graph.

The junction tree can be constructed directly from the MCS
ordering Cλ, λ ∈ Λ.
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The general problem

Factorizing density on X = ×v∈VXv with V and Xv finite:

p(x) =
∏
C∈C

φC (x).

The potentials φC (x) depend on xC = (xv , v ∈ C ) only.
Basic task to calculate marginal probability

p(x∗E ) =
∑
yV\E

p(x∗E , yV \E )

for E ⊆ V and fixed x∗E , but sum has too many terms.
A second purpose is to get the prediction
p(xv | x∗E ) = p(xv , x

∗
E )/p(x∗E ) for v ∈ V .
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Computational structure

Algorithms all arrange the collection of sets C in a junction tree T .
Hence, they works only if C are cliques of chordal graph G.

If the initial model is based on a DAG D, the first step is to form
the moral graph G = Dm, exploiting that if P factorizes w.r.t. D, it
also factorizes w.r.t. Dm.

If G is not chordal from the outset, triangulation is used to
construct chordal graph G′ with E ⊆ E ′. Again, if P factorizes
w.r.t. G it factorizes w.r.t. G′.This step is non-trivial and it is
NP-complete to optimize.

When this has been done, the computations are executed by
message passing.
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The computational structure is set up in several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.
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The computational structure is set up in several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.

The complete process above is known as compilation.

Steffen Lauritzen, University of Oxford Probability Propagation



Chordal graphs and junction trees
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling

Initialization

1. For every vertex v ∈ V we find a clique C (v) in the
triangulated graph G̃ which contains pa(v). Such a clique
exists because v ∪ pa(v) are complete in Dm by construction,
and hence in G̃;

2. Define potential functions φC for all cliques C in G̃ as

φC (x) =
∏

v :C(v)=C

p(xv | xpa(v))

where the product over an empty index set is set to 1, i.e.
φC ≡ 1 if no vertex is assigned to C .

3. It now holds that

p(x) =
∏
C∈C

φC (x).
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Overview

This involves following steps

1. Incorporating observations: If XE = x∗E is observed, we modify
potentials as

φC (xC )← φC (x)
∏

e∈E∩C

δ(x∗e , xe),

with δ(u, v) = 1 if u = v and else δ(u, v) = 0. Then:

p(x |XE = x∗E ) =

∏
C∈C φC (xC )

p(x∗E )
.

2. Marginals p(x∗E ) and p(xC | x∗E ) are then calculated by a local
message passing algorithm.
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Separators

Between any two cliques C and D which are neighbours in the
junction tree their intersection S = C ∩ D is called a separator. In
fact, the sets S are the minimal separators appearing in any
decomposition sequence.

We also assign potentials to separators, initially φS ≡ 1 for all
S ∈ S, where S is the set of separators.

Finally let

κ(x) =

∏
C∈C φC (xC )∏
S∈S φS(xS)

, (1)

and now it holds that p(x | x∗E ) = κ(x)/p(x∗E ).

The expression (1) will be invariant under the message passing.
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Marginalization

The A-marginal of a potential φB for A ⊆ V is

φ↓AB (x) = φ↓AB (xA) =
∑

yA∩B :yA∩B=xA∩B

φB(y)

Since φB depends on x through xB only it is true that if B ⊆ V is
‘small’, marginal can be computed easily.

Note that the marginal φ↓A depends on xA only.
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Marginalization satisfies

Consonance For subsets A and B: φ↓(A∩B) =
(
φ↓B

)↓A
Distributivity If φC depends on xC only and C ⊆ B:

(φφC )↓B =
(
φ↓B

)
φC .

Essentially the distributivity ensures that we can move factors in a
sum outside of the summation sign.
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Messages

When C sends message to D, the following happens:

Before

�
�

�
�

�
�

�
�φC φS φD

-�
�

�
�

�
�

�
�φC φ↓SC φD

φ↓SC
φS After

Computation is local, involving only variables within cliques.
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The expression

κ(x) =

∏
C∈C φC (xC )∏
S∈S φS(xS)

is invariant under the message passing since φCφD/φS is:

φC φD
φ↓SC
φS

φ↓SC

=
φCφD

φS
.

After the message has been sent, D contains the D-marginal of
φCφD/φS .
To see this, calculate(

φCφD

φS

)↓D
=
φD

φS
φ↓DC =

φD

φS
φ↓SC .
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Second message

If D returns message to C , the following happens:

First message

�
�

�
�

�
�

�
�φC

φ↓SD
φS

φ↓S φD
φ↓SC
φS

-

�

�
�

�
�

�
�

�
�φC φ↓SC φD

φ↓SC
φS

Second message
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Now all sets contain the relevant marginal of φ = φCφD/φS :
The separator contains

φ↓S =

(
φCφD

φS

)↓S
= (φ↓D)↓S =

(
φD

φ↓SC

φS

)↓S
=
φ↓SC φ↓SD

φS
.

C contains

φC
φ↓S

φ↓SC

=
φC

φS
φ↓SD = φ↓C

since, as before (
φCφD

φS

)↓C
=
φD

φS
φ↓DC =

φC

φS
φ↓SD .

Further messages between C and D are neutral! Nothing will
change if a message is repeated.
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Two phases:

I CollInfo: messages are sent from leaves towards arbitrarily
chosen root R.
After CollInfo, the root potential satisfies
φR(xR) = κ↓R(xR) = p(xR , x

∗
E ).

I DistInfo: messages are sent from root R towards leaves.
After CollInfo and subsequent DistInfo, it holds for all
B ∈ C ∪ S that φB(xB) == κ↓B(xB) = p(xB , x

∗
E ).

I Hence p(x∗E ) =
∑

xS
φS(xS) for any S ∈ S and p(xv | x∗E ) can

readily be computed from any φS with v ∈ S .
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Messages are sent from leaves towards root.
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After CollInfo, messages are sent from root towards leaves.
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