
Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Local Computation

Steffen Lauritzen, University of Oxford

Graphical Models, Lecture 13, Michaelmas Term 2010

November 22, 2010

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Message scheduling

The general problem

Factorizing density on X = ×v∈VXv with V and Xv finite:

p(x) =
∏
C∈C

φC (x).

The potentials φC (x) depend on xC = (xv , v ∈ C ) only.
Basic task to calculate marginal probability

p(x∗E ) =
∑
yV\E

p(x∗E , yV \E )

for E ⊆ V and fixed x∗E , but sum has too many terms.
A second purpose is to get the prediction
p(xv | x∗E ) = p(xv , x

∗
E )/p(x∗E ) for v ∈ V .

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Message scheduling

The computational structure is set up in several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.

The complete process above is known as compilation.

Computation is then performed by message passing after
observations have been incorporated.

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Message scheduling

We also assign potentials to separators, initially φS ≡ 1 for all
S ∈ S, where S is the set of separators.

Finally let

κ(x) =

∏
C∈C φC (xC )∏
S∈S φS(xS)

. (1)

After incorporation of observations it holds that
p(x | x∗E ) = κ(x)/p(x∗E ).

The expression (1) will be invariant under the message passing.

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Message scheduling

Marginalization

The A-marginal of a potential φB for A ⊆ V is

φ↓AB (x) = φ↓AB (xA) =
∑

yA∩B :yA∩B=xA∩B

φB(y)

Since φB depends on x through xB only it is true that if B ⊆ V is
‘small’, marginal can be computed easily.

Note that the marginal φ↓A depends on xA only.

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Message scheduling

Marginalization satisfies

Consonance For subsets A and B: φ↓(A∩B) =
(
φ↓B

)↓A
Distributivity If φC depends on xC only and C ⊆ B:

(φφC )↓B =
(
φ↓B

)
φC .

Essentially the distributivity ensures that we can move factors in a
sum outside of the summation sign.

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Message scheduling

Messages

When C sends message to D, the following happens:

Before

�
�

�
�

�
�

�
�φC φS φD

-�
�

�
�

�
�

�
�φC φ↓SC φD

φ↓SC
φS After

Computation is local, involving only variables within cliques.

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Message scheduling

The expression

κ(x) =

∏
C∈C φC (xC )∏
S∈S φS(xS)

is invariant under the message passing since φCφD/φS is:

φC φD
φ↓SC
φS

φ↓SC

=
φCφD

φS
.

After the message has been sent, D contains the D-marginal of
φCφD/φS .
To see this, calculate(

φCφD

φS

)↓D
=
φD

φS
φ↓DC =

φD

φS
φ↓SC .

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Message scheduling

Second message

If D returns message to C , the following happens:

First message

�
�

�
�

�
�

�
�φC

φ↓SD
φS

φ↓S φD
φ↓SC
φS

-

�

�
�

�
�

�
�

�
�φC φ↓SC φD

φ↓SC
φS

Second message

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Message scheduling

Now all sets contain the relevant marginal of φ = φCφD/φS :
The separator contains

φ↓S =

(
φCφD

φS

)↓S
= (φ↓D)↓S =

(
φD

φ↓SC

φS

)↓S
=
φ↓SC φ↓SD

φS
.

C contains

φC
φ↓S

φ↓SC

=
φC

φS
φ↓SD = φ↓C

since, as before (
φCφD

φS

)↓C
=
φD

φS
φ↓DC =

φC

φS
φ↓SD .

Further messages between C and D are neutral! Nothing will
change if a message is repeated.

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Message scheduling

Two phases:

I CollInfo: messages are sent from leaves towards arbitrarily
chosen root R.
After CollInfo, the root potential satisfies
φR(xR) = κ↓R(xR) = p(xR , x

∗
E ).

I DistInfo: messages are sent from root R towards leaves.
After CollInfo and subsequent DistInfo, it holds for all
B ∈ C ∪ S that φB(xB) == κ↓B(xB) = p(xB , x

∗
E ).

I Hence p(x∗E ) =
∑

xS
φS(xS) for any S ∈ S and p(xv | x∗E ) can

readily be computed from any φS with v ∈ S .

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Message scheduling

Two phases:

I CollInfo: messages are sent from leaves towards arbitrarily
chosen root R.
After CollInfo, the root potential satisfies
φR(xR) = κ↓R(xR) = p(xR , x

∗
E ).

I DistInfo: messages are sent from root R towards leaves.
After CollInfo and subsequent DistInfo, it holds for all
B ∈ C ∪ S that φB(xB) == κ↓B(xB) = p(xB , x

∗
E ).

I Hence p(x∗E ) =
∑

xS
φS(xS) for any S ∈ S and p(xv | x∗E ) can

readily be computed from any φS with v ∈ S .

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Message scheduling

Two phases:

I CollInfo: messages are sent from leaves towards arbitrarily
chosen root R.
After CollInfo, the root potential satisfies
φR(xR) = κ↓R(xR) = p(xR , x

∗
E ).

I DistInfo: messages are sent from root R towards leaves.
After CollInfo and subsequent DistInfo, it holds for all
B ∈ C ∪ S that φB(xB) == κ↓B(xB) = p(xB , x

∗
E ).

I Hence p(x∗E ) =
∑

xS
φS(xS) for any S ∈ S and p(xv | x∗E ) can

readily be computed from any φS with v ∈ S .

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

The correctness of the algorithm is easily established by induction:

We have on the previous overheads shown correctness for a
junction tree with only two cliques.

Now consider a leaf clique L of the juction tree and let
V ∗ = ∪C :C∈C\{L}C .

We can then think of L and V ∗ forming a junction tree of two
cliques with separator S∗ = L ∩ C ∗ where C ∗ is the neighbour of L
in the junction tree.

After a message has been sent from L to V ∗ in the CollInfo
phase, φV ∗ is equal to the V ∗-marginal of κ.

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

By induction, when all messages have been sent except the one
from the neighbour clique C ∗ to L, all cliques other than L contain
the relevant marginal of κ, and

φV ∗ =

∏
C :C∈C\{L} φC∏
S:S∈S\{S∗} φS

.

Now let, V ∗ send its message back to L. To do this, it needs to
calculate φ↓S

∗

V ∗ . But since S∗ ⊆ C ∗, and φC∗ = φ↓C
∗

V ∗ we have

φ↓S
∗

V ∗ = φ↓S
∗

C∗

and sending a message from V ∗ to L is thus equivalent to sending
a message from C ∗ to L. Thus, after this message has been sent,
φL = κ↓L as desired.

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Alternative scheduling of messages

Local control:
Allow clique to send message if and only if it has already received
message from all other neighbours. Such messages are live.

Using this protocol, there will be one clique who first receives
messages from all its neighbours. This is effectively the root R in
CollInfo and DistInfo.

Additional messages never do any harm (ignoring efficiency issues)
as κ is invariant under message passing.
Exactly two live messages along every branch is needed.

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Local computation algorithms have been developed with a variety
of purposes. For example:

I Kalman filter and smoother

I Solving sparse linear equations;

I Decoding digital signals;

I Estimation in hidden Markov models;

I Peeling in pedigrees;

I Belief function evaluation;

I Probability propagation.

Also dynamic programming, linear programming, optimizing
decisions, calculating Nash equilibria in cooperative games, and
many others. List is far from exhaustive!

All algorithms are using, explicitly or implicitly, a graph
decomposition and a junction tree or similar to make the
computations.

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Maximization
Random sampling
Efficient proportional scaling

Replace sum-marginal with A–maxmarginal:

φ↓AB (x) = max
yB :yA=xA

φB(y)

Satisfies consonance: φ↓(A∩B) =
(
φ↓B

)↓A
and distributivity:

(φφC )↓B =
(
φ↓B

)
φC , if φC depends on xC only and C ⊆ B.

CollInfo yields maximal value of density f .

DistInfo yields configuration with maximum probability.

Viterbi decoding for HMMs is special case.
Since (1) remains invariant, one can switch freely between max-
and sum-propagation.

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Maximization
Random sampling
Efficient proportional scaling

After CollInfo, the root potential is φR(x) ∝ p(xR | xE )
Modify DistInfo as follows:

1. Pick random configuration x̌R from φR .

2. Send message to neighbours C as x̌R∩C = x̌S where
S = C ∩ R is the separator.

3. Continue by picking x̌C according to φC (xC\S , x̌S) and send
message further away from root.

When the sampling stops at leaves of junction tree, a configuration
x̌ has been generated from p(x | x∗E ).

Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Maximization
Random sampling
Efficient proportional scaling

The scaling operation on p:

(Tap)(x)← p(x)
n↓a(xa)

np↓a(xa)
, x ∈ X

is potentially very complex, as it cycles through all x ∈ X , which is
huge if V is large. If we exploit a factorization of p w.r.t. a
junction tree T for a decomposable C ⊇ A

p(x) =

∏
C∈C φC (xC )∏
S∈S φS(xS)

,

we can avoid scaling p and only scale the corresponding factor φC∗

with a ⊆ C ∗:

(TaφC∗)(xC∗)← φC∗(xC∗)
n↓a(xa)

np↓a(xa)
, xC∗ ∈ XC∗

where p↓a is calculated by probability propagation.
Steffen Lauritzen, University of Oxford Local Computation



Probability propagation
Correctness of algorithm

Local computation
Alternative computations

Maximization
Random sampling
Efficient proportional scaling

The scaling can now be made by changing the φ’s:

φB ← φB for B 6= C ∗, φC∗ ← TaφC∗ .

This can reduce the complexity considerably.

Note that if a = C and φa = n↓a(xa), then Taφa = φa. Hence the
explicit formula for the MLE.

Steffen Lauritzen, University of Oxford Local Computation


	Probability propagation
	Basic problem and structure of algorithm
	Setting up the structure
	Message scheduling

	Correctness of algorithm
	Local computation
	Alternative computations
	Maximization
	Random sampling
	Efficient proportional scaling


