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Consider an undirected graph G = (V ,E ). A partitioning of V into
a triple (A,B, S) of subsets of V forms a decomposition of G if

A⊥G B |S and S is complete.

The decomposition is proper if A 6= ∅ and B 6= ∅.
The components of G are the induced subgraphs GA∪S and GB∪S .
A graph is prime if no proper decomposition exists.
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The graph to the left is prime

Decomposition with A = {1, 3}, B = {4, 6, 7} and S = {2, 5}
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Any graph can be recursively decomposed into its maximal prime
subgraphs:
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A graph is decomposable (or rather fully decomposable) if it is
complete or admits a proper decomposition into decomposable
subgraphs.
Definition is recursive. Alternatively this means that all maximal
prime subgraphs are cliques.
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Recursive decomposition of a decomposable graph into cliques
yields the formula:

f (x)
∏
S∈S

fS(xS)ν(S) =
∏
C∈C

fC (xC ).

Here S is the set of minimal complete separators occurring in the
decomposition process and ν(S) the number of times such a
separator appears in this process.
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As we have a particularly simple factorization of the density, we
have a similar factorization of the maximum likelihood estimate for
a decomposable log-linear model.
The MLE for p under the log-linear model with generating class
A = C(G) for a chordal graph G is

p̂(x) =

∏
C∈C n(xC )

n
∏

S∈S n(xS)ν(S)

where ν(S) is the number of times S appears as a separator in the
total decomposition of its dependence graph.
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The following are equivalent for any undirected graph G.

(i) G is chordal;

(ii) G is decomposable;

(iii) All maximal prime subgraphs of G are cliques;

(iv) G admits a perfect numbering;

(v) Every minimal (α, β)-separator are complete.

Trees are chordal graphs and thus decomposable.
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This simple algorithm has complexity O(|V |+ |E |):

1. Choose v0 ∈ V arbitrary and let v0 = 1;

2. When vertices {1, 2, . . . , j} have been identified, choose
v = j + 1 among V \ {1, 2, . . . , j} with highest cardinality of
its numbered neighbours;

3. If bd(j + 1) ∩ {1, 2, . . . , j} is not complete, G is not chordal;

4. Repeat from 2;

5. If the algorithm continues until only one vertex is left, the
graph is chordal and the numbering is perfect.
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Finding the cliques of a chordal graph

From an MCS numbering V = {1, . . . , |V |}, let

Bλ = bd(λ) ∩ {1, . . . , λ− 1}

and πλ = |Bλ|. Call λ a ladder vertex if λ = |V | or if
πλ+1 < πλ + 1. Let Λ be the set of ladder vertices.
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πλ: 0,1,2,2,2,1,1.
The cliques are Cλ = {λ} ∪ Bλ, λ ∈ Λ.
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Let A be a collection of finite subsets of a set V . A junction tree
T of sets in A is an undirected tree with A as a vertex set,
satisfying the junction tree property:

If A,B ∈ A and C is on the unique path in T between A
and B it holds that A ∩ B ⊂ C.

If the sets in an arbitrary A are pairwise incomparable, they can be
arranged in a junction tree if and only if A = C where C are the
cliques of a chordal graph
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The following are equivalent for any undirected graph G.

(i) G is chordal;

(ii) G is decomposable;

(iii) All prime components of G are cliques;

(iv) G admits a perfect numbering;

(v) Every minimal (α, β)-separator are complete.

(vi) The cliques of G can be arranged in a junction tree.
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The junction tree can be constructed directly from the MCS
ordering Cλ, λ ∈ Λ, where Cλ are the cliques: Since the
MCS-numbering is perfect, Cλ, λ > λmin all satisfy

Cλ ∩ (∪λ′<λCλ′) = Cλ ∩ Cλ∗ = Sλ

for some λ∗ < λ.

A junction tree is now easily constructed by attaching Cλ to any
Cλ∗ satisfying the above. Although λ∗ may not be uniquely
determined, Sλ is.

Indeed, the sets Sλ are the minimal complete separators and the
numbers ν(S) are ν(S) = |{λ ∈ Λ : Sλ = S}|.
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A chordal graph
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Junction tree
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Cliques of graph arranged into a tree with C1 ∩ C2 ⊆ D for all
cliques D on path between C1 and C2.
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In general, the prime components of any undirected graph can be
arranged in a junction tree in a similar way.

Then every pair of neighbours (C ,D) in the junction tree
represents a decomposition of G into GC̃ and GD̃ , where C̃ is the
set of vertices in cliques connected to C but separated from D in
the junction tree, and similarly with D̃.

The corresponding algorithm is based on a slightly more
sophisticated algorithm known as Lexicographic Search (LEX)
which runs in O(|V |2) time.
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The MLE for p under a conformal log-linear model with generating
class A = C(G)

p̂(x) =

∏
Q∈Q p̂Q(xQ)∏

S∈S{n(xS)/n}ν(S)

where p̂Q(xQ) is the estimate of the marginal distrbution based on
data from Q only and ν(S) is the number of times S appears as a
separator in the decomposition of its dependence graph into prime
components.

When the prime components are cliques it further holds that
p̂C (xC ) = n(xC )/n.

In fact, true also if if A is not conformal, but it holds that S ∈ A
for all separators of the dependence graph G(A).
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