- 1. Consider the causal Bayesian network with variables A, B, C, D, E, F determined by A, B, C being mutually independent and binary with values $\{-1, 1\}$ and P(A = 1) = P(B = 1) = P(C = 1) = 1/2 and D = AB, E = BC, F = DE.
 - (a) Draw the graph of the associated Bayesian network
 - (b) Calculate P(C = 1 | A = -1) by probability propagation
 - (c) Find the intervention probability $P(E = 1 | F \leftarrow -1, B \leftarrow 1)$.
- 2. Let X_1, X_2, X_3, X_4, X_5 be independent with $X_i \sim \mathcal{N}(0, 1)$. Define recursively the structural equation system

 $Y_1 \leftarrow X_1, \quad Y_2 \leftarrow X_2 + Y_1, \quad Y_3 \leftarrow X_3 + Y_2, \quad Y_4 \leftarrow X_4 + Y_2 + Y_3, \quad Y_5 \leftarrow X_5 + Y_1 + Y_4$

and assume intervention in the system is made by replacement, so the associated Bayesian network is causal

- (a) Draw the causal DAG associated with this system
- (b) Find the concentration matrix $K = \Sigma^{-1}$ of Y.
- (c) Construct the dependence graph of Y;
- (d) Find the conditional distribution of Y_5 given $Y_3 = 0, Y_1 = 0$.
- (e) Find the intervention distribution of Find the intervention distribution of Y_5 given $Y_3 \leftarrow 0, Y_1 \leftarrow 0$.
- 3. Let $\mathcal{A} = \mathcal{C}$ be the cliques of a chordal graph $\mathcal{G} = (V, E)$. For $A \subseteq V$ let H(A) denote the entropy of X_A .

Show that

$$H(V) = \sum_{C \in \mathcal{C}} H(C) - \sum_{S \in \mathcal{S}} \nu(S) H(S)$$

where S are the minimal complete separators of G and $\nu(S)$ the number of times that the set S appears as an intersection between neighbouring cliques in a junction tree for A.

- 4. Consider a Gaussian distribution $\mathcal{N}_4(0, \Sigma)$ with $K = \Sigma^{-1}$ satisfying the conditional independence restrictions of the graph $\mathcal{G} = (V, E)$ with $V = \{1, 2, 3, 4\}$ and $E = \{\{1, 2\}, \{2, 3\}\{1, 4\}\{3, 4\}\}.$
 - (a) Find two equations of degree 3 in σ_{13} and σ_{24} expressing these in terms of the variances $\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{44}$ and the covariances $\sigma_{12}, \sigma_{13}, \sigma_{14}, \sigma_{15}$; *Hint:* Express the appropriate inverse element of the covariance matrix as a cofactor;
 - (b) Consider the likelihood equations based on observing a Wishart matrix W = w with $W \sim \mathcal{W}(n, \Sigma)$. Use the answer under (a) to establish an equation of degree 5 for the maximum likelihood estimate of σ_{13} .
 - (c) Assume next that $\sigma_{11} = \sigma_{22} = \sigma_{33} = \sigma_{44} = 1$ and $\sigma_{12} = \sigma_{23} = \sigma_{34} = \rho$ and $\sigma_{14} = -\rho$. Show that then $\rho^2 < 1/2$.

Steffen L. Lauritzen, University of Oxford