1. Consider the causal Bayesian network with variables A, B, C, D, E, F determined by A, B, C being mutually independent and binary with values $\{-1,1\}$ and $P(A=1)=P(B=1)=P(C=1)=1 / 2$ and $D=A B$, $E=B C, F=D E$.
(a) Draw the graph of the associated Bayesian network
(b) Calculate $P(C=1 \mid A=-1)$ by probability propagation
(c) Find the intervention probability $P(E=1 \mid F \leftarrow-1, B \leftarrow 1)$.
2. Let $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ be independent with $X_{i} \sim \mathcal{N}(0,1)$. Define recursively the structural equation system
$Y_{1} \leftarrow X_{1}, \quad Y_{2} \leftarrow X_{2}+Y_{1}, \quad Y_{3} \leftarrow X_{3}+Y_{2}, \quad Y_{4} \leftarrow X_{4}+Y_{2}+Y_{3}, \quad Y_{5} \leftarrow X_{5}+Y_{1}+Y_{4}$
and assume intervention in the system is made by replacement, so the associated Bayesian network is causal
(a) Draw the causal DAG associated with this system
(b) Find the concentration matrix $K=\Sigma^{-1}$ of Y.
(c) Construct the dependence graph of Y;
(d) Find the conditional distribution of Y_{5} given $Y_{3}=0, Y_{1}=0$.
(e) Find the intervention distribution of Find the intervention distribution of Y_{5} given $Y_{3} \leftarrow 0, Y_{1} \leftarrow 0$.
3. Let $\mathcal{A}=\mathcal{C}$ be the cliques of a chordal graph $\mathcal{G}=(V, E)$. For $A \subseteq V$ let $H(A)$ denote the entropy of X_{A}.
Show that

$$
H(V)=\sum_{C \in \mathcal{C}} H(C)-\sum_{S \in \mathcal{S}} \nu(S) H(S)
$$

where \mathcal{S} are the minimal complete separators of \mathcal{G} and $\nu(S)$ the number of times that the set S appears as an intersection between neighbouring cliques in a junction tree for \mathcal{A}.
4. Consider a Gaussian distribution $\mathcal{N}_{4}(0, \Sigma)$ with $K=\Sigma^{-1}$ satisfying the conditional independence restrictions of the graph $\mathcal{G}=(V, E)$ with $V=$ $\{1,2,3,4\}$ and $E=\{\{1,2\},\{2,3\}\{1,4\}\{3,4\}\}$.
(a) Find two equations of degree 3 in σ_{13} and σ_{24} expressing these in terms of the variances $\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{44}$ and the covariances $\sigma_{12}, \sigma_{13}, \sigma_{14}, \sigma_{15}$; Hint: Express the appropriate inverse element of the covariance matrix as a cofactor;
(b) Consider the likelihood equations based on observing a Wishart matrix $W=w$ with $W \sim \mathcal{W}(n, \Sigma)$. Use the answer under (a) to establish an equation of degree 5 for the maximum likelihood estimate of σ_{13}.
(c) Assume next that $\sigma_{11}=\sigma_{22}=\sigma_{33}=\sigma_{44}=1$ and $\sigma_{12}=\sigma_{23}=\sigma_{34}=\rho$ and $\sigma_{14}=-\rho$. Show that then $\rho^{2}<1 / 2$.

