1. A DAG \mathcal{D} is said to be perfect if all parents are married, i.e. if it holds that

$$
\alpha, \beta \in \operatorname{pa}(\gamma) \Rightarrow \alpha \rightarrow \beta \text { or } \beta \rightarrow \alpha
$$

(a) Show that a perfect DAG \mathcal{D} is Markov equivalent to its skeleton i.e. the undirected graph obtained by ignoring directions on all arrows;
(b) Show the converse, i.e. that if \mathcal{D} is Markov equivalent to its skeleton, the \mathcal{D} is perfect.
(c) Show that the skeleton of a perfect \mathcal{D} is chordal.
(d) Show that the edges of a chordal graph \mathcal{G} can be directed to create a Markov equivalent DAG.

Hint: Exploit the existence of a perfect numbering of a chordal graph.
2. The conditional entropy $H(X \mid Y)$ is defined as the average entropy in the conditional distribution

$$
H(X \mid Y)=\mathbf{E}[\mathbf{E}\{-\log f(X \mid Y) \mid Y\}]=\sum_{y}\left\{\sum_{x}-f(x \mid y) \log f(x \mid y)\right\} f(y)
$$

(a) Use the information inequality to show that

$$
H(X \mid Y) \leq H(X)
$$

i.e. the entropy is always reduced by conditoning
(b) Show that

$$
H(X, Y)=H(X \mid Y)+H(Y)
$$

(c) For three discrete random variables, show that

$$
H(X, Y, Z)+H(Z) \leq H(X, Z)+H(Y, Z)
$$

(d) Show further that

$$
X \Perp Y \mid Z \Longleftrightarrow H(X, Y, Z)+H(Z)=H(X, Z)+H(Y, Z)
$$

3. Consider the DAG \mathcal{D} with arrows $A \rightarrow C, B \rightarrow C, B \rightarrow D, C \rightarrow E, D \rightarrow$ $F, E \rightarrow G, E \rightarrow H, F \rightarrow G, G \rightarrow J, I \rightarrow J$.
(a) Find the moral graph \mathcal{D}^{m} of \mathcal{D};
(b) Find a minimal chordal cover \mathcal{G} of \mathcal{D}^{m}, i.e. a chordal graph $\mathcal{G} \supset \mathcal{D}^{m}$ with the property that removal of any edge in \mathcal{G} which is not an edge in \mathcal{D}^{m} will not be chordal;
(c) Arrange the cliques of \mathcal{G} in a junction tree;
(d) For a specification of all conditional distributions $p_{v \mid \mathrm{pa}(v)}, v \in V$, allocate appropriate potentials to the junction tree to prepare for probability propagation.
4. Consider random variables X_{1}, \ldots, X_{6} taking values in $\{-1,1\}$ and having distribution P with joint probability mass function determined as

$$
p(x) \propto \exp \left\{\theta\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{3} x_{5}\right)\right\},
$$

where $\theta \neq 0$.
(a) Find the dependence graph of P and identify its cliques;
(b) Set up an appropriate junction tree for probability propagation;
(c) Allocate potentials to cliques;
(d) Calculate $P\left(X_{5}=1 \mid X_{1}=1, X_{4}=1\right)$ by probability propagation.

