1. A DAG \mathcal{D} is said to be *perfect* if all parents are married, i.e. if it holds that

$$\alpha, \beta \in pa(\gamma) \Rightarrow \alpha \to \beta \text{ or } \beta \to \alpha.$$

- (a) Show that a perfect DAG \mathcal{D} is Markov equivalent to its *skeleton* i.e. the undirected graph obtained by ignoring directions on all arrows;
- (b) Show the converse, i.e. that if \mathcal{D} is Markov equivalent to its skeleton, the \mathcal{D} is perfect.
- (c) Show that the skeleton of a perfect \mathcal{D} is chordal.
- (d) Show that the edges of a chordal graph \mathcal{G} can be directed to create a Markov equivalent DAG.

Hint: Exploit the existence of a perfect numbering of a chordal graph.

2. The conditional entropy H(X | Y) is defined as the average entropy in the conditional distribution

$$H(X | Y) = \mathbf{E}[\mathbf{E}\{-\log f(X | Y) | Y\}] = \sum_{y} \left\{ \sum_{x} -f(x | y) \log f(x | y) \right\} f(y).$$

(a) Use the information inequality to show that

$$H(X \mid Y) \le H(X),$$

i.e. the entropy is always reduced by conditoning

(b) Show that

$$H(X,Y) = H(X \mid Y) + H(Y).$$

(c) For three discrete random variables, show that

$$H(X,Y,Z) + H(Z) \le H(X,Z) + H(Y,Z).$$

(d) Show further that

$$X \perp\!\!\!\perp Y \mid Z \iff H(X,Y,Z) + H(Z) = H(X,Z) + H(Y,Z).$$

- 3. Consider the DAG \mathcal{D} with arrows $A \to C, B \to C, B \to D, C \to E, D \to F, E \to G, E \to H, F \to G, G \to J, I \to J.$
 - (a) Find the moral graph \mathcal{D}^m of \mathcal{D} ;
 - (b) Find a minimal chordal cover \mathcal{G} of \mathcal{D}^m , i.e. a chordal graph $\mathcal{G} \supset \mathcal{D}^m$ with the property that removal of any edge in \mathcal{G} which is not an edge in \mathcal{D}^m will not be chordal;
 - (c) Arrange the cliques of \mathcal{G} in a junction tree;
 - (d) For a specification of all conditional distributions $p_{v \mid pa(v)}, v \in V$, allocate appropriate potentials to the junction tree to prepare for probability propagation.

4. Consider random variables X_1, \ldots, X_6 taking values in $\{-1, 1\}$ and having distribution P with joint probability mass function determined as

 $p(x) \propto \exp\{\theta(x_1x_2 + x_2x_3 + x_3x_4 + x_3x_5)\},\$

where $\theta \neq 0$.

- (a) Find the dependence graph of P and identify its cliques;
- (b) Set up an appropriate junction tree for probability propagation;
- (c) Allocate potentials to cliques;
- (d) Calculate $P(X_5 = 1 | X_1 = 1, X_4 = 1)$ by probability propagation.

Steffen L. Lauritzen, University of Oxford

November 16, 2010