1. Consider a Gaussian distribution $\mathcal{N}_{5}(0, \Sigma)$ with $K=\Sigma^{-1}$ satisfying the conditional independence restrictions of the graph $\mathcal{G}=(V, E)$ with $V=$ $\{1,2,3,4,5\}$ and $E=\{\{1,2\},\{1,3\},\{1,4\},\{1,5\}\}$.
(a) Show that the determinant of Σ satisfies

$$
\operatorname{det} \Sigma=\prod_{i=1}^{5} \sigma_{i i} \prod_{j=2}^{5}\left(1-\rho_{1 j}^{2}\right)
$$

where $\rho_{i j}$ is the correlation between X_{i} and X_{j};
(b) Express the covariance σ_{23} in terms of the variances $\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{44}, \sigma_{55}$ and the covariances $\sigma_{12}, \sigma_{13}, \sigma_{14}, \sigma_{15}$.
2. Consider a Gaussian distribution $\mathcal{N}_{4}(0, \Sigma)$ with $K=\Sigma^{-1}$ satisfying the conditional independence restrictions of the graph $\mathcal{G}=(V, E)$ with $V=$ $\{1,2,3,4\}$ and $E=\{\{1,2\},\{2,3\},\{3,4\}\}$. Assume that the following Wishart matrix has been observed, with 10 degrees of freedom:

$$
\left(\begin{array}{cccc}
10 & 1 & 4 & 4 \\
1 & 10 & 2 & 5 \\
4 & 2 & 10 & 2 \\
4 & 5 & 2 & 10
\end{array}\right)
$$

Find the maximum likelihood estimate of the concentration matrix.
3. Consider a directed graph $\mathcal{D}=(V, E)$ and assume given $k_{v}, v \in V$ with $k_{v} \geq 0$ and $\sum_{x_{v} \in \mathcal{X}_{v}} k_{v}\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)=1$. Define

$$
p(x)=\prod_{v \in V} k_{v}\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)
$$

(a) Show that when \mathcal{D} is acyclic, i.e. a DAG, this yields a well-defined probability distribution;
(b) Show that it holds that

$$
\begin{equation*}
p\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)=k_{v}\left(x_{v} \mid x_{\mathrm{pa}(v)}\right) \tag{1}
\end{equation*}
$$

(c) Give a counterexample in the case where \mathcal{D} has directed cycles.

Hint: Use induction for (a) and (b), exploiting that a DAG always has a terminal vertex v_{0}, i.e. a vertex with no children.
4. Consider a DAG \mathcal{D} with arrows $1 \rightarrow 2,2 \rightarrow 5,5 \rightarrow 6,4 \rightarrow 5,4 \rightarrow 7,3 \rightarrow 4$.
(a) List all conditional independence relations corresponding to the local, directed Markov property;
(b) List all conditional independence relations corresponding to the ordered Markov property for the well-ordering induced by the given numbering;
(c) Find the ancestral sets generated by the following subsets:
i. $\{5\}$;
ii. $\{2,7\}$;
iii. $\{4,6\}$;
(d) Which of the following separation statements are true? For those that are not true, identify an active trail.
i. $2 \perp_{\mathcal{D}} 4 \mid 5$;
ii. $2 \perp_{\mathcal{D}} 7 \mid 3$,
iii. $1 \perp_{\mathcal{D}} 7 \mid 6$;
iv. $1 \perp_{\mathcal{D}} 3 \mid 4,6$;
5. Let P be a distribution which factorizes over the DAG \mathcal{D} and let $G(P)$ be its dependence graph. Show that $G(P) \subseteq \mathcal{D}^{m}$, where \mathcal{D}^{m} is the moral graph of \mathcal{D}.

