- 1. Consider a Gaussian distribution $\mathcal{N}_5(0, \Sigma)$ with $K = \Sigma^{-1}$ satisfying the conditional independence restrictions of the graph $\mathcal{G} = (V, E)$ with $V = \{1, 2, 3, 4, 5\}$ and $E = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}\}.$
 - (a) Show that the determinant of Σ satisfies

$$\det \Sigma = \prod_{i=1}^{5} \sigma_{ii} \prod_{j=2}^{5} (1 - \rho_{1j}^2)$$

where ρ_{ij} is the correlation between X_i and X_j ;

- (b) Express the covariance σ_{23} in terms of the variances $\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{44}, \sigma_{55}$ and the covariances $\sigma_{12}, \sigma_{13}, \sigma_{14}, \sigma_{15}$.
- 2. Consider a Gaussian distribution $\mathcal{N}_4(0, \Sigma)$ with $K = \Sigma^{-1}$ satisfying the conditional independence restrictions of the graph $\mathcal{G} = (V, E)$ with $V = \{1, 2, 3, 4\}$ and $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$. Assume that the following Wishart matrix has been observed, with 10 degrees of freedom:

Find the maximum likelihood estimate of the concentration matrix.

3. Consider a directed graph $\mathcal{D} = (V, E)$ and assume given $k_v, v \in V$ with $k_v \ge 0$ and $\sum_{x_v \in \mathcal{X}_v} k_v(x_v | x_{\operatorname{pa}(v)}) = 1$. Define

$$p(x) = \prod_{v \in V} k_v(x_v \mid x_{\operatorname{pa}(v)}).$$

- (a) Show that when \mathcal{D} is acyclic, i.e. a DAG, this yields a well-defined probability distribution;
- (b) Show that it holds that

$$p(x_v | x_{pa(v)}) = k_v(x_v | x_{pa(v)}).$$
(1)

(c) Give a counterexample in the case where \mathcal{D} has directed cycles.

Hint: Use induction for (a) and (b), exploiting that a DAG always has a terminal vertex v_0 , i.e. a vertex with no children.

- 4. Consider a DAG \mathcal{D} with arrows $1 \rightarrow 2, 2 \rightarrow 5, 5 \rightarrow 6, 4 \rightarrow 5, 4 \rightarrow 7, 3 \rightarrow 4$.
 - (a) List all conditional independence relations corresponding to the local, directed Markov property;
 - (b) List all conditional independence relations corresponding to the ordered Markov property for the well-ordering induced by the given numbering;

- (c) Find the ancestral sets generated by the following subsets:
 - i. $\{5\};$
 - ii. $\{2,7\};$
 - iii. $\{4, 6\};$
- (d) Which of the following separation statements are true? For those that are not true, identify an active trail.
 - i. $2 \perp_{\mathcal{D}} 4 \mid 5;$
 - ii. $2 \perp_{\mathcal{D}} 7 \mid 3$,
 - iii. $1 \perp_{\mathcal{D}} 7 \mid 6;$
 - iv. $1 \perp_{\mathcal{D}} 3 \mid 4, 6;$
- 5. Let P be a distribution which factorizes over the DAG \mathcal{D} and let G(P) be its dependence graph. Show that $G(P) \subseteq \mathcal{D}^m$, where \mathcal{D}^m is the moral graph of \mathcal{D} .