1. For two discrete variables I and J with joint distribution $p_{i j}$, the odds-ratio $\theta_{i i * j j}$ is defined as

$$
\theta_{i i^{*} j j^{*}}=\frac{p_{i \mid j} / p_{i^{*} \mid j}}{p_{i \mid j^{*}} / p_{i^{*} \mid j^{*}}}=\frac{p_{i j} p_{i^{*} j *}}{p_{i^{*} j} p_{i j^{*}}} .
$$

Show that $I \Perp J \Longleftrightarrow \theta_{i i^{*} j j^{*}} \equiv 1$.
2. For three discrete variables I, J and K with joint distribution $p_{i j k}$ the conditional odds-ratio $\theta_{i j \mid k}$ is similarly

$$
\theta_{i i^{*} j j^{*} \mid k}=\frac{p_{i \mid j k} / p_{i^{*} \mid j k}}{p_{i \mid j^{*} k} / p_{i^{*} \mid j^{*} k}}=\frac{p_{i j k} p_{i^{*} j * k}}{p_{i^{*} j k} p_{i j * k}} .
$$

Show that p belongs to the log-linear model with generating class $\{I, J\},\{J, K\}\{I, K\}$ if and only if the conditional odds-ratio is constant in k. For simplicity, you may assume $p_{i j k}>0$ for all i, j, k.
3. Draw the following graphs, identify their prime components, and verify whether they are chordal or not:
(a) $E=\{\{a, b\},\{b, c\},\{c, d\},\{d, e\},\{c, f\},\{e, f\}\}$.
(b) $E=\{\{a, b\},\{b, c\},\{c, d\},\{d, a\},\{a, e\},\{b, e\},\{c, e\},\{d, e\}\}$.
(c) $E=\{\{a, b\},\{b, c\},\{c, d\},\{a, e\},\{b, e\},\{c, e\},\{d, e\}\}$.
4. Consider the generating class $\mathcal{A}=\{\{A, E, F\},\{D, E\},\{B, G, F\},\{A, H, F\},\{C, D\}\}$.
(a) Find the dependence graph $G(\mathcal{A})$; is \mathcal{A} conformal?
(b) Find a perfect numbering of the vertices with $F=1$ using maximum cardinality search;
(c) Argue that $G(\mathcal{A})$ is chordal and \mathcal{A} is decomposable;
(d) Arrange the cliques of the dependence graph $\mathcal{G}(\mathcal{A})$ in a junction tree and identify the separators and their multiplicities.
(e) Using the notation $n_{a b c d e f g}$ etc. for the cell counts of a contingency table corresponding to these variables, write an expression fof the MLE of the cell probabilities $p_{\text {abcdefg }}$.
5. The regular multivariate Gaussian distribution over $\mathcal{R}^{|V|}$ has density

$$
f(x \mid \xi, \Sigma)=(2 \pi)^{-|V| / 2}(\operatorname{det} K)^{1 / 2} e^{-(x-\xi)^{\top} K(x-\xi) / 2},
$$

where $K=\Sigma^{-1}$ is called the concentration of the distribution. If X is multivariate Gaussian, it holds that

$$
\mathbf{E}(X)=\xi, \quad \operatorname{Cov}(X)=\Sigma
$$

so ξ is the mean and Σ the covariance of X. We then write $X \sim \mathcal{N}_{|V|}(\xi, \Sigma)$. Let X be multivariate normal $X \sim \mathcal{N}_{|V|}(0, \Sigma)$ and let $K=\Sigma^{-1}$. Show that the dependence graph $G(K)$ for X is given by

$$
\alpha \nsim \beta \Longleftrightarrow k_{\alpha \beta}=0 .
$$

