1. Consider the following generating class over $V = \{a, b, c, d, e, f, g, h\}$:

$$\mathcal{A} = \{\{a, c, e\}, \{b, c\}, \{b, h\}, \{d, e\}, \{d, f, h\}, \{d, g, h\}, \{f, g\}\}.$$

- (a) Find the dependence graph G(A);
- (b) Find the factor graph F(A);
- (c) Find the cliques of G(A);
- (d) Show \mathcal{A} is not conformal;
- (e) which of the following three statements are implied by A?

$${a,b,c} \perp \{d,f,g\} \mid \{e,h\}, \quad \{a,b,c\} \perp \{d,f,g,h\} \mid \{e\}, \quad d \perp h \mid \{f,g\}.$$

2. Prove the *information inequality:* For non-negative numbers $a(x)_{x \in \mathcal{X}}$ and $b(x)_{x \in \mathcal{X}}$ with $\sum_{x} a(x) = \sum_{x} b(x)$ it holds that

$$\sum_{x \in \mathcal{X}} a(x) \log b(x) \le \sum_{x \in \mathcal{X}} a(x) \log a(x)$$

where the inequality is strict unless a(x) = b(x) for all $x \in \mathcal{X}$. For the expressions to make sense we use the convention that $0 \log 0 = 0$.

Hint: Show first the inequality $\log y \leq y - 1$.

3. The entropy H(X) of a discrete random variable X is

$$H(X) = \mathbf{E}\{-\log f(X)\} = \sum_{x \in \mathcal{X}} -f(x)\log f(x).$$

- (a) Show that $H(X) \geq 0$;
- (b) Show that the entropy of the uniform distribution with $f(x) = 1/|\mathcal{X}|$ is $H(X) = \log |\mathcal{X}|$.
- (c) Show that the uniform distribution has maximal entropy, i.e. that

$$H(X) \le \log |\mathcal{X}|.$$

4. Consider a three-way contingency table with variables A, B, C and cell counts

	C			
A	B	0	1	total
1	1	3	5	8
1	0	12	10	22
0	1	10	10	20
0	0	1	4	5

Perform one cycle of the IPS algorithm for the hierarchical log-linear model with generator $\{\{A,B\},\{B,C\},\{A,C\}\}.$

5. Consider a generating class $\mathcal{A} = \{a, b\}$ with only two elements. Show that the IPS algorithm converges after a single cycle.