
Graphical Models and Inference, MT 2010 Problem Sheet 1

1. Prove that the following statements are all equivalent, where f is a generic
symbol for the density or probability mass function. For simplicity you
may consider the discrete case only. In the general case “for all” should be
read“except for a set of triplets (x, y, z) with probability zero”.

(1) For all (x, y, z): f(x, y, z)f(z) = f(x, z)f(y, z);

(2) For all (x, y, z) with f(z) > 0: f(x, y, z) = f(x | z)f(y, z);

(3) For all (x, y, z) with f(y, z) > 0: f(x | y, z) = f(x | z);

(4) For all (x, y, z) with f(y, z) > 0: f(x, z | y) = f(x | z)f(z | y);

(5) For some functions h and k it holds: f(x, y, z) = h(x, z)k(y, z).

Thus, any of these properties can be used to define the symbol X ⊥⊥Y |Z.

2. Prove that for discrete random variables X, Y , Z, and W it holds that

(C1) If X ⊥⊥Y |Z then Y ⊥⊥X |Z;

(C2) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥U |Z;

(C3) If X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥Y | (Z, U);

(C4) If X ⊥⊥Y |Z and X ⊥⊥W | (Y,Z), then X ⊥⊥ (Y,W ) |Z.

Hint: Exploit the factorizations established in the first problem.

3. Show that for binary random variables (X, Y, Z) it holds that

X ⊥⊥Y and X ⊥⊥Y |Z ⇒ (X, Z)⊥⊥Y or X ⊥⊥ (Y,Z).

4. Consider the graph below:
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(a) Write down all conditional independence statements for this graph cor-
responding to the pairwise Markov property;

(b) Write down all conditional independence statements for this graph cor-
responding to the local Markov property;

(c) Write down some of the conditional independence statements for this
graph which follow from the global Markov property and which are not
listed above.
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5. The result of this question is to be used in all remaining questions! Show that
if the distribution of X |Z is degenerate so that X in effect is a deterministic
function of Z, then X ⊥⊥Y |Z for all possible random variables Y .

6. Let X = Y = Z with P{X = 1} = P{X = 0} = 1/2. Show that this
distribution satisfies (P) but not (L) with respect to the graph below.
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7. Let U and Z be independent with

P (U = 1) = P (Z = 1) = P (U = 0) = P (Z = 0) = 1/2,

W = U , Y = Z, and X = WY . Show that this distribution satisfies (L) but
not (G) w.r.t. the graph below.
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8. This question might well be harder than the others! Consider the distribu-
tion over four binary variables which gives probability 1/8 to all of the 8
configurations displayed in the figure below:
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Note that there are only four variables. The only reason that the graph
(four-cycle) is repeated is to see the obvious pattern in the configuration.

Show that this distribution satisfies (G) with respect to the four cycle dis-
played, but the distribution does not factorize with respect to this graph,
i.e., it does not satisfy (F).

Hint: Assume that it does factorize and show that if it is positive on these
configurations, it must be positive on all 16 possible configurations of the
four binary variables.
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