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The Wishart distribution is the sampling distribution of the matrix
of sums of squares and products. More precisely:

A random d × d matrix W has a d-dimensional Wishart
distribution with parameter Σ and n degrees of freedom if

W
D
=

n∑
i=1

X ν(X ν)>

where X ν ∼ Nd(0,Σ). We then write

W ∼ Wd(n,Σ).

The Wishart is the multivariate analogue to the χ2:

W1(n, σ2) = σ2χ2(n).

If W ∼ Wd(n,Σ) its mean is E(W ) = nΣ.
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If W1 and W2 are independent with Wi ∼ Wd(ni ,Σ), then

W1 + W2 ∼ Wd(n1 + n2,Σ).

If A is an r × d matrix and W ∼ Wd(n,Σ), then

AWA> ∼ Wr (n,AΣA>).

For r = 1 we get that when W ∼ Wd(n,Σ) and λ ∈ Rd ,

λ>Wλ ∼ σ2
λχ

2(n),

where σ2
λ = λ>Σλ.
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If W ∼ Wd(n,Σ), where Σ is regular, then W is regular with
probability one if and only if n ≥ d .

When n ≥ d the Wishart distribution has density

fd(w | n,Σ)

= c(d , n)−1(det Σ)−n/2(det w)(n−d−1)/2e− tr(Σ−1w)/2

for w positive definite, and 0 otherwise.

The Wishart constant c(d , n) is

c(d , n) = 2nd/2(2π)d(d−1)/4
d∏

i=1

Γ{(n + 1− i)/2}.
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Consider X = (Xv , v ∈ V ) ∼ NV (0,Σ) with Σ regular and
K = Σ−1.
The concentration matrix of the conditional distribution of
(Xα,Xβ) given XV \{α,β} is

K{α,β} =

(
kαα kαβ
kβα kββ

)
,

implying

Cov(Xα,Xβ|XV \{α,β}) = (K−1)αβ = −kαβ/(kααkββ − k2
αβ).

Hence
α⊥⊥β |V \ {α, β} ⇐⇒ kαβ = 0.

Thus the dependence graph G(K ) of a regular Gaussian
distribution is given by

α 6∼ β ⇐⇒ kαβ = 0.
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S(G) denotes the symmetric matrices A with aαβ = 0 unless α ∼ β
and S+(G) their positive definite elements.

A Gaussian graphical model for X specifies X as multivariate
normal with K ∈ S+(G) and otherwise unknown.

The likelihood function based on a sample of size n is

L(K ) ∝ (det K )n/2e− tr(KW )/2,

where W is the Wishart matrix of sums of squares and products,
W ∼ W|V |(n,Σ) with Σ−1 = K ∈ S+(G).
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Define the matrices Au, u ∈ V ∪ E as those with elements

au
ij =


1 if u ∈ V and i = j = u
1 if u ∈ E and u = {i , j}
0 otherwise.

 .

Then, as K ∈ S(G),

K =
∑
v∈V

kv Av +
∑
e∈E

keAe (1)

and hence

tr(KW ) =
∑
v∈V

kv tr(Av W ) +
∑
e∈E

ke tr(AeW )

Steffen Lauritzen, University of Oxford Decomposable Graphical Gaussian Models



The Wishart distribution
Gaussian graphical models

Decomposable Gaussian graphical models
Linear structural equation systems

Definition and likelihood function
Iterative Proportional Scaling

Hence we can identify the family as a (regular and canonical)
exponential family with − tr(AuW )/2, u ∈ V ∪ E as canonical
sufficient statistics.

This yields the likelihood equations

tr(AuW ) = n tr(AuΣ), u ∈ V ∪ E .

which can also be expressed as

nσ̂vv = wvv , nσ̂αβ = wαβ, v ∈ V , {α, β} ∈ E .

or, equivalently

nΣ̂cc = wcc for all cliques c ∈ C(G),

We should remember the model restriction Σ−1 ∈ S+(G).

Steffen Lauritzen, University of Oxford Decomposable Graphical Gaussian Models



The Wishart distribution
Gaussian graphical models

Decomposable Gaussian graphical models
Linear structural equation systems

Definition and likelihood function
Iterative Proportional Scaling

For K ∈ S+(G) and c ∈ C, define the operation of ‘adjusting the
c-marginal’ as follows. Let a = V \ c and

TcK =

(
n(wcc)−1 + Kca(Kaa)−1Kac Kca

Kac Kaa

)
. (2)

The C -marginal covariance Σ̃cc corresponding to the adjusted
concentration matrix becomes

Σ̃cc = {(TcK )−1}cc
=

{
n(wcc)−1 + Kca(Kaa)−1Kac − Kca(Kaa)−1Kac

}−1

= wcc/n,

hence TcK does indeed adjust the marginals. From (2) it is seen
that the pattern of zeros in K is preserved under the operation Tc ,
and it can also be seen to stay positive definite.
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Next we choose any ordering (c1, . . . , ck) of the cliques in G.
Choose further K0 = I and define for r = 0, 1, . . .

Kr+1 = (Tc1 · · ·Tck
)Kr .

Then we have: Consider a sample from a covariance selection
model with graph G. Then

K̂ = lim
r→∞

Kr ,

provided the maximum likelihood estimate K̂ of K exists.
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If the graph G is chordal, we say that the graphical model is
decomposable.

In this case, the IPS-algorithm converges in a finite number of
steps, as in the discrete case.

We also have the familiar factorization of densities

f (x |Σ) =

∏
C∈C f (xC |ΣC )∏

S∈S f (xS |ΣS)ν(S)
(3)

where ν(S) is the number of times S appear as intersection
between neighbouring cliques of a junction tree for C.
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Relations for trace and determinant

Using the factorization (3) we can for example match the
expressions for the trace and determinant of Σ

tr(KW ) =
∑
C∈C

tr(KC WC )−
∑
S∈S

ν(S) tr(KSWS)

and further

det Σ = {det(K )}−1 =

∏
C∈C det{ΣC}∏

S∈S{det(ΣS)}ν(S)

These are some of many relations that can be derived using the
decomposition property of chordal graphs.
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The same factorization clearly holds for the maximum likelihood
estimates:

f (x | Σ̂) =

∏
C∈C f (xC | Σ̂C )∏

S∈S f (xS | Σ̂S)ν(S)
(4)

Moreover, it follows from the general likelihood equations that

Σ̂A = WA/n whenever A is complete.

Exploiting this, we can obtain an explicit formula for the maximum
likelihood estimate in the case of a chordal graph.

Steffen Lauritzen, University of Oxford Decomposable Graphical Gaussian Models



The Wishart distribution
Gaussian graphical models

Decomposable Gaussian graphical models
Linear structural equation systems

Basic factorizations
Maximum likelihood estimates
An example

For a |d | × |e| matrix A = {aγµ}γ∈d ,µ∈e we let [A]V denote the
matrix obtained from A by filling up with zero entries to obtain full
dimension |V | × |V |, i.e.(

[A]V
)
γµ

=

{
aγµ if γ ∈ d , µ ∈ e
0 otherwise.

The maximum likelihood estimates exists if and only if n ≥ C for
all C ∈ C. Then the following simple formula holds for the
maximum likelihood estimate of K :

K̂ = n

{∑
C∈C

[
(wC )−1

]V
−
∑
S∈S

ν(S)
[
(wS)−1

]V}
.
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This graph is chordal with cliques {1, 2, 3}, {3, 4, 5} with separator
S = {3} having ν({3}) = 1.
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Since one degree of freedom is lost by subtracting the average, we
get in this example

K̂ = 87


w11

[123] w12
[123] w13

[123] 0 0

w21
[123] w22

[123] w23
[123] 0 0

w31
[123] w32

[123] w33
[123] + w33

[345] − 1/w33 w34
[345] w35

[345]

0 0 w43
[345] w44

[345] w45
[345]

0 0 w53
[345] w54

[345] w55
[345]


where w ij

[123] is the ijth element of the inverse of

W[123] =

 w11 w12 w13

w21 w22 w23

w31 w32 w33


and so on.
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Consider a directed acyclic graph D and associate for every vertex
a random variable Xv . Consider now the equation system

Xv ← α>v Xpa(v) + βv + Uv , v ∈ V (5)

where Uv , v ∈ V are independent random disturbances with
Uv ∼ N (0, σ2

v ).

Such an equation system is known as a recursive structural
equation system.

Structural equation systems are used heavily in social sciences and
in economics. The term structural refers to the fact that the
equations are assumed to be stable under intervention so that
fixing a value of x∗v would change the system only by removing the
line in the equation system (5) defining x∗v .
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A recursive structural equation system defines a multivariate
Gaussian distribution with joint density

f (x |α, σ) =
∏
v

(2π)−1/2σ−1
v e

−
(xv−α>v xpa(v)−βv )2

2σ2
v

= (2π)−|V |/2

(∏
v

σ−1
v

)

×e
−
∑

v

(xv−α>v xpa(v)−βv )2

2σ2
v ,

from which the joint concentration matrix K can easily be derived.
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Consider the system

X1 ← U1

X2 ← U2

X3 ← α31X1 + U3

X4 ← α42X2 + α43X3 + U4.

The quadratic expression in the exponent becomes

x2
1

σ2
1

+
x2

2

σ2
2

+
(x3 − α31x1)2

σ2
3

+
(x4 − α42x2 − α43x3)2

σ2
4

.
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Expanding the squares and identifying terms yields the
concentration matrix

K =


1
σ2

1
+

α2
31

σ2
3

0 −α31

σ2
3

0

0 1
σ2

2
+

α2
42

σ2
4

α42α43

σ2
4

−α42

σ2
4

−α31

σ2
3

α42α43

σ2
4

1
σ2

3
+

α2
43

σ2
4

−α43

σ2
4

0 −α42

σ2
4

−α43

σ2
4

1
σ2

4

 .
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The covariance matrix can in principle be found by inverting the
above. However, it is easier to express X in terms of the Us as

X1 = U1

X2 = U2

X3 = α31U1 + U3

X4 = α43α31U1 + α42U2 + α43U3 + U4

and then calculate the covariances directly to obtain
σ2

1 0 α31σ
2
1 α43α31σ

2
1

0 σ2
2 0 α42σ

2
2

α31σ
2
1 0 σ2

3 + α2
31σ

2
1 α43α

2
31σ

2
1 + α43σ

2
3

α43α31σ
2
1 α42σ

2
2 α43α

2
31σ

2
1 + α43σ

2
3 ω2

4

 ,

where
ω2

4 = α2
43α

2
31σ

2
1 + α2

42σ
2
2 + α2

43σ
2
3 + σ2

4.
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Systems of structural equations of the type considered are called
recursive in contrast to feedback systems of equations where
directed cycles in the corresponding graph are allowed.

It is sometimes customary to allow correlations between the
disturbance terms which makes conditional independence relations
more complex.

This type of model and analysis goes back to the geneticist Sewall
Wright who coined the term path analysis to the calculus of effects
based on this kind of models.

This is one of the early precursors for modern graphical modelling.

Markov properties for directed graphs are necessary to understand
these models.
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