Decomposable Graphical Gaussian Models

Steffen Lauritzen, University of Oxford

Graphical Models and Inference, Lecture 9, Michaelmas Term 2010

November 8, 2010

The Wishart distribution is the sampling distribution of the matrix of sums of squares and products. More precisely:
A random $d \times d$ matrix W has a d-dimensional Wishart distribution with parameter Σ and n degrees of freedom if

$$
W \stackrel{\mathcal{D}}{=} \sum_{i=1}^{n} X^{\nu}\left(X^{\nu}\right)^{\top}
$$

where $X^{\nu} \sim \mathcal{N}_{d}(0, \Sigma)$. We then write

$$
W \sim \mathcal{W}_{d}(n, \Sigma)
$$

The Wishart is the multivariate analogue to the χ^{2} :

$$
\mathcal{W}_{1}\left(n, \sigma^{2}\right)=\sigma^{2} \chi^{2}(n)
$$

If $W \sim \mathcal{W}_{d}(n, \Sigma)$ its mean is $\mathbf{E}(W)=n \Sigma$.

If W_{1} and W_{2} are independent with $W_{i} \sim \mathcal{W}_{d}\left(n_{i}, \Sigma\right)$, then

$$
W_{1}+W_{2} \sim \mathcal{W}_{d}\left(n_{1}+n_{2}, \Sigma\right)
$$

If A is an $r \times d$ matrix and $W \sim \mathcal{W}_{d}(n, \Sigma)$, then

$$
A W A^{\top} \sim \mathcal{W}_{r}\left(n, A \Sigma A^{\top}\right)
$$

For $r=1$ we get that when $W \sim \mathcal{W}_{d}(n, \Sigma)$ and $\lambda \in R^{d}$,

$$
\lambda^{\top} W \lambda \sim \sigma_{\lambda}^{2} \chi^{2}(n)
$$

where $\sigma_{\lambda}^{2}=\lambda^{\top} \Sigma \lambda$.

If $W \sim \mathcal{W}_{d}(n, \Sigma)$, where Σ is regular, then W is regular with probability one if and only if $n \geq d$.
When $n \geq d$ the Wishart distribution has density

$$
\begin{aligned}
& f_{d}(w \mid n, \Sigma) \\
& \quad=c(d, n)^{-1}(\operatorname{det} \Sigma)^{-n / 2}(\operatorname{det} w)^{(n-d-1) / 2} e^{-\operatorname{tr}\left(\Sigma^{-1} w\right) / 2}
\end{aligned}
$$

for w positive definite, and 0 otherwise.
The Wishart constant $c(d, n)$ is

$$
c(d, n)=2^{n d / 2}(2 \pi)^{d(d-1) / 4} \prod_{i=1}^{d} \Gamma\{(n+1-i) / 2\}
$$

Consider $X=\left(X_{v}, v \in V\right) \sim \mathcal{N}_{V}(0, \Sigma)$ with Σ regular and $K=\Sigma^{-1}$.
The concentration matrix of the conditional distribution of $\left(X_{\alpha}, X_{\beta}\right)$ given $X_{V \backslash\{\alpha, \beta\}}$ is

$$
K_{\{\alpha, \beta\}}=\left(\begin{array}{ll}
k_{\alpha \alpha} & k_{\alpha \beta} \\
k_{\beta \alpha} & k_{\beta \beta}
\end{array}\right)
$$

implying

$$
\operatorname{Cov}\left(X_{\alpha}, X_{\beta} \mid X_{V \backslash\{\alpha, \beta\}}\right)=\left(K^{-1}\right)_{\alpha \beta}=-k_{\alpha \beta} /\left(k_{\alpha \alpha} k_{\beta \beta}-k_{\alpha \beta}^{2}\right)
$$

Hence

$$
\alpha \Perp \beta \mid V \backslash\{\alpha, \beta\} \Longleftrightarrow k_{\alpha \beta}=0 .
$$

Thus the dependence graph $\mathcal{G}(K)$ of a regular Gaussian distribution is given by

$$
\alpha \nsim \beta \Longleftrightarrow k_{\alpha \beta}=0 .
$$

$\mathcal{S}(\mathcal{G})$ denotes the symmetric matrices A with $a_{\alpha \beta}=0$ unless $\alpha \sim \beta$ and $\mathcal{S}^{+}(\mathcal{G})$ their positive definite elements.
A Gaussian graphical model for X specifies X as multivariate normal with $K \in \mathcal{S}^{+}(\mathcal{G})$ and otherwise unknown.
The likelihood function based on a sample of size n is

$$
L(K) \propto(\operatorname{det} K)^{n / 2} e^{-\operatorname{tr}(K W) / 2}
$$

where W is the Wishart matrix of sums of squares and products, $W \sim \mathcal{W}_{|V|}(n, \Sigma)$ with $\Sigma^{-1}=K \in \mathcal{S}^{+}(\mathcal{G})$.

Define the matrices $A^{u}, u \in V \cup E$ as those with elements

$$
a_{i j}^{u}=\left\{\begin{array}{cc}
1 & \text { if } u \in V \text { and } i=j=u \\
1 & \text { if } u \in E \text { and } u=\{i, j\} \\
0 & \text { otherwise. }
\end{array}\right) .
$$

Then, as $K \in \mathcal{S}(\mathcal{G})$,

$$
\begin{equation*}
K=\sum_{v \in V} k_{v} A^{v}+\sum_{e \in E} k_{e} A^{e} \tag{1}
\end{equation*}
$$

and hence

$$
\operatorname{tr}(K W)=\sum_{v \in V} k_{v} \operatorname{tr}\left(A^{v} W\right)+\sum_{e \in E} k_{e} \operatorname{tr}\left(A^{e} W\right)
$$

Hence we can identify the family as a (regular and canonical) exponential family with $-\operatorname{tr}\left(A^{u} W\right) / 2, u \in V \cup E$ as canonical sufficient statistics.
This yields the likelihood equations

$$
\operatorname{tr}\left(A^{u} W\right)=n \operatorname{tr}\left(A^{u} \Sigma\right), \quad u \in V \cup E
$$

which can also be expressed as

$$
n \hat{\sigma}_{v v}=w_{v v}, \quad n \hat{\sigma}_{\alpha \beta}=w_{\alpha \beta}, \quad v \in V,\{\alpha, \beta\} \in E
$$

or, equivalently

$$
n \hat{\Sigma}_{c c}=w_{c c} \text { for all cliques } c \in \mathcal{C}(\mathcal{G})
$$

We should remember the model restriction $\Sigma^{-1} \in \mathcal{S}^{+}(\mathcal{G})$.

For $K \in \mathcal{S}^{+}(\mathcal{G})$ and $c \in \mathcal{C}$, define the operation of 'adjusting the c-marginal' as follows. Let $a=V \backslash c$ and

$$
T_{c} K=\left(\begin{array}{cc}
n\left(w_{c c}\right)^{-1}+K_{c a}\left(K_{a a}\right)^{-1} K_{a c} & K_{c a} \tag{2}\\
K_{a c} & K_{a a}
\end{array}\right) .
$$

The C-marginal covariance $\tilde{\Sigma}_{c c}$ corresponding to the adjusted concentration matrix becomes

$$
\begin{aligned}
\tilde{\Sigma}_{c c} & =\left\{\left(T_{c} K\right)^{-1}\right\}_{c c} \\
& =\left\{n\left(w_{c c}\right)^{-1}+K_{c a}\left(K_{a a}\right)^{-1} K_{a c}-K_{c a}\left(K_{a a}\right)^{-1} K_{a c}\right\}^{-1} \\
& =w_{c c} / n,
\end{aligned}
$$

hence $T_{c} K$ does indeed adjust the marginals. From (2) it is seen that the pattern of zeros in K is preserved under the operation T_{c}, and it can also be seen to stay positive definite.

Next we choose any ordering $\left(c_{1}, \ldots, c_{k}\right)$ of the cliques in \mathcal{G}. Choose further $K_{0}=I$ and define for $r=0,1, \ldots$

$$
K_{r+1}=\left(T_{c_{1}} \cdots T_{c_{k}}\right) K_{r}
$$

Then we have: Consider a sample from a covariance selection model with graph \mathcal{G}. Then

$$
\hat{K}=\lim _{r \rightarrow \infty} K_{r},
$$

provided the maximum likelihood estimate \hat{K} of K exists.

If the graph \mathcal{G} is chordal, we say that the graphical model is decomposable.
In this case, the IPS-algorithm converges in a finite number of steps, as in the discrete case.
We also have the familiar factorization of densities

$$
\begin{equation*}
f(x \mid \Sigma)=\frac{\prod_{C \in \mathcal{C}} f\left(x_{C} \mid \Sigma_{C}\right)}{\prod_{S \in \mathcal{S}} f\left(x_{S} \mid \Sigma_{S}\right)^{\nu(S)}} \tag{3}
\end{equation*}
$$

where $\nu(S)$ is the number of times S appear as intersection between neighbouring cliques of a junction tree for \mathcal{C}.

Relations for trace and determinant

Using the factorization (3) we can for example match the expressions for the trace and determinant of Σ

$$
\operatorname{tr}(K W)=\sum_{C \in \mathcal{C}} \operatorname{tr}\left(K_{C} W_{C}\right)-\sum_{S \in \mathcal{S}} \nu(S) \operatorname{tr}\left(K_{S} W_{S}\right)
$$

and further

$$
\operatorname{det} \Sigma=\{\operatorname{det}(K)\}^{-1}=\frac{\prod_{C \in \mathcal{C}} \operatorname{det}\left\{\Sigma_{C}\right\}}{\prod_{S \in \mathcal{S}}\left\{\operatorname{det}\left(\Sigma_{S}\right)\right\}^{\nu(S)}}
$$

These are some of many relations that can be derived using the decomposition property of chordal graphs.

The same factorization clearly holds for the maximum likelihood estimates:

$$
\begin{equation*}
f(x \mid \hat{\Sigma})=\frac{\prod_{C \in \mathcal{C}} f\left(x_{C} \mid \hat{\Sigma}_{C}\right)}{\prod_{S \in \mathcal{S}} f\left(x_{S} \mid \hat{\Sigma}_{S}\right)^{\nu(S)}} \tag{4}
\end{equation*}
$$

Moreover, it follows from the general likelihood equations that

$$
\hat{\Sigma}_{A}=W_{A} / n \text { whenever } A \text { is complete. }
$$

Exploiting this, we can obtain an explicit formula for the maximum likelihood estimate in the case of a chordal graph.

For a $|d| \times|e|$ matrix $A=\left\{a_{\gamma \mu}\right\}_{\gamma \in d, \mu \in e}$ we let $[A]^{V}$ denote the matrix obtained from A by filling up with zero entries to obtain full dimension $|V| \times|V|$, i.e.

$$
\left([A]^{V}\right)_{\gamma \mu}= \begin{cases}a_{\gamma \mu} & \text { if } \gamma \in d, \mu \in e \\ 0 & \text { otherwise }\end{cases}
$$

The maximum likelihood estimates exists if and only if $n \geq C$ for all $C \in \mathcal{C}$. Then the following simple formula holds for the maximum likelihood estimate of K :

$$
\hat{K}=n\left\{\sum_{C \in \mathcal{C}}\left[\left(w_{C}\right)^{-1}\right]^{v}-\sum_{S \in \mathcal{S}} \nu(S)\left[\left(w_{S}\right)^{-1}\right]^{v}\right\} .
$$

Mathematics marks

This graph is chordal with cliques $\{1,2,3\},\{3,4,5\}$ with separator $S=\{3\}$ having $\nu(\{3\})=1$.

Since one degree of freedom is lost by subtracting the average, we get in this example
where $w_{[123]}^{i j}$ is the ijth element of the inverse of

$$
W_{[123]}=\left(\begin{array}{lll}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23} \\
w_{31} & w_{32} & w_{33}
\end{array}\right)
$$

and so on.

Consider a directed acyclic graph \mathcal{D} and associate for every vertex a random variable X_{v}. Consider now the equation system

$$
\begin{equation*}
X_{v} \leftarrow \alpha_{v}^{\top} X_{\mathrm{pa}(v)}+\beta_{v}+U_{v}, v \in V \tag{5}
\end{equation*}
$$

where $U_{v}, v \in V$ are independent random disturbances with $U_{v} \sim \mathcal{N}\left(0, \sigma_{v}^{2}\right)$.
Such an equation system is known as a recursive structural equation system.
Structural equation systems are used heavily in social sciences and in economics. The term structural refers to the fact that the equations are assumed to be stable under intervention so that fixing a value of x_{v}^{*} would change the system only by removing the line in the equation system (5) defining x_{v}^{*}.

A recursive structural equation system defines a multivariate Gaussian distribution with joint density

$$
\begin{aligned}
f(x \mid \alpha, \sigma)= & \prod_{v}(2 \pi)^{-1 / 2} \sigma_{v}^{-1} e^{-\frac{\left(x_{v}-\alpha_{v}^{\top} x_{\mathrm{pa}(v)}-\beta_{v}\right)^{2}}{2 \sigma_{v}^{2}}} \\
= & (2 \pi)^{-|V| / 2}\left(\prod_{v} \sigma_{v}^{-1}\right) \\
& \times e^{-\sum_{v} \frac{\left(x_{v}-\alpha_{v}^{\top} x_{\mathrm{pa}(v)}-\beta_{v}\right)^{2}}{2 \sigma_{v}^{2}}}
\end{aligned}
$$

from which the joint concentration matrix K can easily be derived.

Consider the system

$$
\begin{aligned}
& X_{1} \leftarrow U_{1} \\
& X_{2} \leftarrow U_{2} \\
& X_{3} \leftarrow \alpha_{31} X_{1}+U_{3} \\
& X_{4} \leftarrow \alpha_{42} X_{2}+\alpha_{43} X_{3}+U_{4}
\end{aligned}
$$

The quadratic expression in the exponent becomes

$$
\frac{x_{1}^{2}}{\sigma_{1}^{2}}+\frac{x_{2}^{2}}{\sigma_{2}^{2}}+\frac{\left(x_{3}-\alpha_{31} x_{1}\right)^{2}}{\sigma_{3}^{2}}+\frac{\left(x_{4}-\alpha_{42} x_{2}-\alpha_{43} x_{3}\right)^{2}}{\sigma_{4}^{2}} .
$$

Expanding the squares and identifying terms yields the concentration matrix

$$
K=\left(\begin{array}{cccc}
\frac{1}{\sigma_{1}^{2}}+\frac{\alpha_{31}^{2}}{\sigma_{3}^{2}} & 0 & \frac{-\alpha_{31}}{\sigma_{3}^{2}} & 0 \\
0 & \frac{1}{\sigma_{2}^{2}}+\frac{\alpha_{42}^{2}}{\sigma_{2}^{2}} & \frac{\alpha_{42} \alpha_{33}}{\sigma_{4}^{2}} & \frac{-\alpha_{42}}{\sigma_{2}^{2}} \\
\frac{-\alpha_{31}}{\sigma_{3}^{2}} & \frac{\alpha_{42} \alpha_{43}}{\sigma_{4}^{2}} & \frac{1}{\sigma_{3}^{2}}+\frac{\alpha_{43}^{2}}{\sigma_{4}^{2}} & \frac{-\alpha_{43}}{\sigma_{4}^{2}} \\
0 & \frac{-\alpha_{42}}{\sigma_{4}^{2}} & \frac{-\alpha_{4}}{\sigma_{4}^{2}} & \frac{1}{\sigma_{4}^{2}}
\end{array}\right) .
$$

The covariance matrix can in principle be found by inverting the above. However, it is easier to express X in terms of the $U \mathrm{~s}$ as

$$
\begin{aligned}
& X_{1}=U_{1} \\
& X_{2}=U_{2} \\
& X_{3}=\alpha_{31} U_{1}+U_{3} \\
& X_{4}=\alpha_{43} \alpha_{31} U_{1}+\alpha_{42} U_{2}+\alpha_{43} U_{3}+U_{4}
\end{aligned}
$$

and then calculate the covariances directly to obtain

$$
\left(\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \alpha_{31} \sigma_{1}^{2} & \alpha_{43} \alpha_{31} \sigma_{1}^{2} \\
0 & \sigma_{2}^{2} & 0 & \alpha_{42} \sigma_{2}^{2} \\
\alpha_{31} \sigma_{1}^{2} & 0 & \sigma_{3}^{2}+\alpha_{31}^{2} \sigma_{1}^{2} & \alpha_{43} \alpha_{31}^{2} \sigma_{1}^{2}+\alpha_{43} \sigma_{3}^{2} \\
\alpha_{43} \alpha_{31} \sigma_{1}^{2} & \alpha_{42} \sigma_{2}^{2} & \alpha_{43} \alpha_{31}^{2} \sigma_{1}^{2}+\alpha_{43} \sigma_{3}^{2} & \omega_{4}^{2}
\end{array}\right)
$$

where

$$
\omega_{4}^{2}=\alpha_{43}^{2} \alpha_{31}^{2} \sigma_{1}^{2}+\alpha_{42}^{2} \sigma_{2}^{2}+\alpha_{43}^{2} \sigma_{3}^{2}+\sigma_{4}^{2}
$$

Systems of structural equations of the type considered are called recursive in contrast to feedback systems of equations where directed cycles in the corresponding graph are allowed.
It is sometimes customary to allow correlations between the disturbance terms which makes conditional independence relations more complex.
This type of model and analysis goes back to the geneticist Sewall Wright who coined the term path analysis to the calculus of effects based on this kind of models.
This is one of the early precursors for modern graphical modelling. Markov properties for directed graphs are necessary to understand these models.

