The Multivariate Gaussian Distribution

Steffen Lauritzen and Helene Gehrmann University of Oxford

Graphical Models and Inference, Lecture 7, Michaelmas Term 2010
October 28, 2010

A d-dimensional random vector $X=\left(X_{1}, \ldots, X_{d}\right)$ has a multivariate Gaussian distribution or normal distribution on \mathcal{R}^{d} if there is a vector $\xi \in \mathcal{R}^{d}$ and a $d \times d$ matrix Σ such that

$$
\begin{equation*}
\lambda^{\top} X \sim \mathcal{N}\left(\lambda^{\top} \xi, \lambda^{\top} \Sigma \lambda\right) \quad \text { for all } \lambda \in R^{d} \tag{1}
\end{equation*}
$$

We then write $X \sim \mathcal{N}_{d}(\xi, \Sigma)$.
Taking $\lambda=e_{i}$ or $\lambda=e_{i}+e_{j}$ where e_{i} is the unit vector with i-th coordinate 1 and the remaining equal to zero yields:

$$
X_{i} \sim \mathcal{N}\left(\xi_{i}, \sigma_{i i}\right), \quad \operatorname{Cov}\left(X_{i}, X_{j}\right)=\sigma_{i j}
$$

Hence ξ is the mean vector and Σ the covariance matrix of the distribution.

The definition (1) makes sense if and only if $\lambda^{\top} \Sigma \lambda \geq 0$, i.e. if Σ is positive semidefinite. Note that we have allowed distributions with variance zero.

The multivariate moment generating function of X can be calculated using the relation (1) as

$$
m_{d}(\lambda)=E\left\{e^{\lambda^{\top} x}\right\}=e^{\lambda^{\top} \xi+\lambda^{\top} \Sigma \lambda / 2}
$$

where we have used that the univariate moment generating function for $\mathcal{N}\left(\mu, \sigma^{2}\right)$ is

$$
m_{1}(t)=e^{t \mu+\sigma^{2} t^{2} / 2}
$$

and let $t=1, \mu=\lambda^{\top} \xi$, and $\sigma^{2}=\lambda^{\top} \Sigma \lambda$.
In particular this means that a multivariate Gaussian distribution is determined by its mean vector and covariance matrix.

Assume $X^{\top}=\left(X_{1}, X_{2}, X_{3}\right)$ with X_{i} independent and $X_{i} \sim \mathcal{N}\left(\xi_{i}, \sigma_{i}^{2}\right)$. Then

$$
\lambda^{\top} X=\lambda_{1} X_{1}+\lambda_{2} X_{2}+\lambda_{3} X_{3} \sim \mathcal{N}\left(\mu, \tau^{2}\right)
$$

with

$$
\mu=\lambda^{\top} \xi=\lambda_{1} \xi_{1}+\lambda_{2} \xi_{2}+\lambda_{3} \xi_{3}, \quad \tau^{2}=\lambda_{1}^{2} \sigma_{1}^{2}+\lambda_{2}^{2} \sigma_{2}^{2}+\lambda_{3}^{2} \sigma_{3}^{2} .
$$

Hence $X \sim \mathcal{N}_{3}(\xi, \Sigma)$ with $\xi^{\top}=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ and

$$
\Sigma=\left(\begin{array}{ccc}
\sigma_{1}^{2} & 0 & 0 \\
0 & \sigma_{2}^{2} & 0 \\
0 & 0 & \sigma_{3}^{2}
\end{array}\right)
$$

If Σ is positive definite, i.e. if $\lambda^{\top} \Sigma \lambda>0$ for $\lambda \neq 0$, the distribution has density on \mathcal{R}^{d}

$$
\begin{equation*}
f(x \mid \xi, \Sigma)=(2 \pi)^{-d / 2}(\operatorname{det} K)^{1 / 2} e^{-(x-\xi)^{\top} K(x-\xi) / 2} \tag{2}
\end{equation*}
$$

where $K=\Sigma^{-1}$ is the concentration matrix of the distribution.
Since a positive semidefinite matrix is positive definite if and only if it is invertible, we then also say that Σ is regular.
If X_{1}, \ldots, X_{d} are independent and $X_{i} \sim \mathcal{N}\left(\xi_{i}, \sigma_{i}^{2}\right)$ their joint density has the form (2) with $\Sigma=\operatorname{diag}\left(\sigma_{i}^{2}\right)$ and $K=\Sigma^{-1}=\operatorname{diag}\left(1 / \sigma_{i}^{2}\right)$.
Hence vectors of independent Gaussians are multivariate Gaussian.

In the bivariate case it is traditional to write

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{1} \sigma_{2} \rho \\
\sigma_{1} \sigma_{2} \rho & \sigma_{2}^{2}
\end{array}\right)
$$

with ρ being the correlation between X_{1} and X_{2}. Then

$$
\operatorname{det}(\Sigma)=\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)=\operatorname{det}(K)^{-1}
$$

and

$$
K=\frac{1}{\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)}\left(\begin{array}{cc}
\sigma_{2}^{2} & -\sigma_{1} \sigma_{2} \rho \\
-\sigma_{1} \sigma_{2} \rho & \sigma_{1}^{2}
\end{array}\right) .
$$

Thus the density becomes

$$
\begin{aligned}
& f(x \mid \xi, \Sigma)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{\left(1-\rho^{2}\right)}} \\
& \quad \times e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left\{\frac{\left(x_{1}-\xi_{1}\right)^{2}}{\sigma_{1}^{2}}-2 \rho \frac{\left(x_{1}-\xi_{1}\right)\left(x_{2}-\xi_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(x_{2}-\xi_{2}\right)^{2}}{\sigma_{2}^{2}}\right\}} .
\end{aligned}
$$

The contours of this density are ellipses and the corresponding density is bell-shaped with maximum in $\left(\xi_{1}, \xi_{2}\right)$.

The marginal distributions of a vector X can all be Gaussian without the joint being multivariate Gaussian:
For example, let $X_{1} \sim \mathcal{N}(0,1)$, and define X_{2} as

$$
X_{2}=\left\{\begin{array}{cc}
X_{1} & \text { if }\left|X_{1}\right|>c \\
-X_{1} & \text { otherwise. }
\end{array}\right.
$$

Then, using the symmetry of the univariate Gausssian distribution, X_{2} is also distributed as $\mathcal{N}(0,1)$.

However, the joint distribution is not Gaussian unless $c=0$ since, for example, $Y=X_{1}+X_{2}$ satisfies

$$
P(Y=0)=P\left(X_{2}=-X_{1}\right)=P\left(\left|X_{1}\right| \leq c\right)=\Phi(c)-\Phi(-c)
$$

Note that for $c=0$, the correlation ρ between X_{1} and X_{2} is 1 whereas for $c=\infty, \rho=-1$.
It follows that there is a value of c so that X_{1} and X_{2} are uncorrelated, and still not jointly Gaussian.

Adding two independent Gaussians yields a Gaussian: If $X \sim \mathcal{N}_{d}\left(\xi_{1}, \Sigma_{1}\right)$ and $X_{2} \sim \mathcal{N}_{d}\left(\xi_{2}, \Sigma_{2}\right)$ and $X_{1} \Perp X_{2}$

$$
X_{1}+X_{2} \sim \mathcal{N}_{d}\left(\xi_{1}+\xi_{2}, \Sigma_{1}+\Sigma_{2}\right)
$$

To see this, just note that

$$
\lambda^{\top}\left(X_{1}+X_{2}\right)=\lambda^{\top} X_{1}+\lambda^{\top} X_{2}
$$

and use the univariate addition property.

Linear transformations preserve multivariate normality:
If A is an $r \times d$ matrix, $b \in \mathcal{R}^{r}$ and $X \sim \mathcal{N}_{d}(\xi, \Sigma)$, then

$$
Y=A X+b \sim \mathcal{N}_{r}\left(A \xi+b, A \Sigma A^{\top}\right)
$$

Again, just write

$$
\gamma^{\top} Y=\gamma^{\top}(A X+b)=\left(A^{\top} \gamma\right)^{\top} X+\gamma^{\top} b
$$

and use the corresponding univariate result.

Partition X into into X_{1} and X_{2}, where $X_{1} \in \mathcal{R}^{r}$ and $X_{2} \in \mathcal{R}^{s}$ with $r+s=d$.
Partition mean vector, concentration and covariance matrix accordingly as

$$
\xi=\binom{\xi_{1}}{\xi_{2}}, \quad K=\left(\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right), \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

so that Σ_{11} is $r \times r$ and so on. Then, if $X \sim \mathcal{N}_{d}(\xi, \Sigma)$

$$
X_{2} \sim \mathcal{N}_{s}\left(\xi_{2}, \Sigma_{22}\right)
$$

This follows simply from the previous fact using the matrix

$$
A=\left(0_{s r} l_{s}\right)
$$

where $0_{s r}$ is an $s \times r$ matrix of zeros and I_{s} is the $s \times s$ identity matrix.

If Σ_{22} is regular, it further holds that

$$
X_{1} \mid X_{2}=x_{2} \sim \mathcal{N}_{r}\left(\xi_{1 \mid 2}, \Sigma_{1 \mid 2}\right)
$$

where

$$
\xi_{1 \mid 2}=\xi_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\xi_{2}\right) \quad \text { and } \quad \Sigma_{1 \mid 2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} .
$$

In particular, $\Sigma_{12}=0$ if and only if X_{1} and X_{2} are independent.

To see this, we simply calculate the conditional density.

$$
\begin{aligned}
& f\left(x_{1} \mid x_{2}\right) \propto f_{\xi, \Sigma}\left(x_{1}, x_{2}\right) \\
& \quad \propto \exp \left\{-\left(x_{1}-\xi_{1}\right)^{\top} K_{11}\left(x_{1}-\xi_{1}\right) / 2-\left(x_{1}-\xi_{1}\right)^{\top} K_{12}\left(x_{2}-\xi_{2}\right)\right\} .
\end{aligned}
$$

The linear term involving x_{1} has coefficient equal to

$$
K_{11} \xi_{1}-K_{12}\left(x_{2}-\xi_{2}\right)=K_{11}\left\{\xi_{1}-K_{11}^{-1} K_{12}\left(x_{2}-\xi_{2}\right)\right\}
$$

Using the matrix identities

$$
\begin{equation*}
K_{11}^{-1}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{11}^{-1} K_{12}=-\Sigma_{12} \Sigma_{22}^{-1} \tag{4}
\end{equation*}
$$

we find

$$
f\left(x_{1} \mid x_{2}\right) \propto \exp \left\{-\left(x_{1}-\xi_{1 \mid 2}\right)^{\top} K_{11}\left(x_{1}-\xi_{1 \mid 2}\right) / 2\right\}
$$

and the result follows.
From the identities (3) and (4) it follows in particular that then the conditional expectation and concentrations also can be calculated as

$$
\xi_{1 \mid 2}=\xi_{1}-K_{11}^{-1} K_{12}\left(x_{2}-\xi_{2}\right) \quad \text { and } \quad K_{1 \mid 2}=K_{11} .
$$

Note that the marginal covariance is simply expressed in terms of Σ whereas the conditional concentration is simply expressed in terms of K. Further, X_{1} and X_{2} are independent if and only if $K_{12}=0$, giving $K_{12}=0$ if and only if $\Sigma_{12}=0$.

Consider $\mathcal{N}_{3}(0, \Sigma)$ with covariance matrix

$$
\Sigma=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

The concentration matrix is

$$
K=\Sigma^{-1}=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right) .
$$

The marginal distribution of $\left(X_{2}, X_{3}\right)$ has covariance and concentration matrix

$$
\Sigma_{23}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right), \quad\left(\Sigma_{23}\right)^{-1}=\frac{1}{3}\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) .
$$

The conditional distribution of $\left(X_{1}, X_{2}\right)$ given X_{3} has concentration and covariance matrix

$$
K_{12}=\left(\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right), \quad \Sigma_{12 \mid 3}=\left(K_{12}\right)^{-1}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right) .
$$

Similarly, $\mathbf{V}\left(X_{1} \mid X_{2}, X_{3}\right)=1 / k_{11}=1 / 3$, etc.

A square matrix A has trace

$$
\operatorname{tr}(A)=\sum_{i} a_{i i}
$$

The trace has a number of properties:

1. $\operatorname{tr}(\gamma A+\mu B)=\gamma \operatorname{tr}(A)+\mu \operatorname{tr}(B)$ for γ, μ being scalars;
2. $\operatorname{tr}(A)=\operatorname{tr}\left(A^{\top}\right)$;
3. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
4. $\operatorname{tr}(A)=\sum_{i} \lambda_{i}$ where λ_{i} are the eigenvalues of A.

For symmetric matrices the last statement follows from taking an orthogonal matrix O so that $O A O^{\top}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ and using

$$
\operatorname{tr}\left(O A O^{\top}\right)=\operatorname{tr}\left(A O^{\top} O\right)=\operatorname{tr}(A)
$$

The trace is thus orthogonally invariant, as is the determinant:

$$
\operatorname{det}\left(O A O^{\top}\right)=\operatorname{det}(O) \operatorname{det}(A) \operatorname{det}\left(O^{\top}\right)=1 \operatorname{det}(A) 1=\operatorname{det}(A)
$$

There is an important trick that we shall use again and again: For $\lambda \in \mathcal{R}^{d}$

$$
\lambda^{\top} A \lambda=\operatorname{tr}\left(\lambda^{\top} A \lambda\right)=\operatorname{tr}\left(A \lambda \lambda^{\top}\right)
$$

since $\lambda^{\top} A \lambda$ is a scalar.

Consider the case where $\xi=0$ and a sample $X^{1}=x^{1}, \ldots, X^{n}=x^{n}$ from a multivariate Gaussian distribution $\mathcal{N}_{d}(0, \Sigma)$ with Σ regular. Using (2), we get the likelihood function

$$
\begin{align*}
L(K) & =(2 \pi)^{-n d / 2}(\operatorname{det} K)^{n / 2} e^{-\sum_{\nu=1}^{n}\left(x^{\nu}\right)^{\top} K x^{\nu} / 2} \\
& \propto(\operatorname{det} K)^{n / 2} e^{-\sum_{\nu=1}^{n} \operatorname{tr}\left\{K x^{\nu}\left(x^{\nu}\right)^{\top}\right\} / 2} \\
& =(\operatorname{det} K)^{n / 2} e^{-\operatorname{tr}\left\{K \sum_{\nu=1}^{n} x^{\nu}\left(x^{\nu}\right)^{\top}\right\} / 2} \\
& =(\operatorname{det} K)^{n / 2} e^{-\operatorname{tr}(K w) / 2} . \tag{5}
\end{align*}
$$

where

$$
W=\sum_{\nu=1}^{n} X^{\nu}\left(X^{\nu}\right)^{\top}
$$

is the matrix of sums of squares and products.

Writing the trace out

$$
\operatorname{tr}(K W)=\sum_{i} \sum_{j} k_{i j} W_{j i}
$$

emphasizes that it is linear in both K and W and we can recognize this as a linear and canonical exponential family with K as the canonical parameter and $-W / 2$ as the canonical sufficient statistic. Thus, the likelihood equation becomes

$$
\mathbf{E}(-W / 2)=-n \Sigma / 2=-w / 2
$$

since $\mathbf{E}(W)=n \Sigma$. Solving, we get

$$
\hat{K}^{-1}=\hat{\Sigma}=w / n
$$

in analogy with the univariate case.

Rewriting the likelihood function as

$$
\log L(K)=\frac{n}{2} \log (\operatorname{det} K)-\operatorname{tr}(K w) / 2
$$

we can of course also differentiate to find the maximum, leading to

$$
\frac{\partial}{\partial k_{i j}} \log (\operatorname{det} K)=w_{i j} / n
$$

which in combination with the previous result yields

$$
\frac{\partial}{\partial K} \log (\operatorname{det} K)=K^{-1}
$$

The latter can also be derived directly by writing out the determinant, and it holds for any non-singular square matrix, i.e. one which is not necessarily positive definite.

