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Markov properties for directed acyclic graphs Definition and examples

A directed acyclic graph D over a finite set V is a simple graph
with all edges directed and no directed cycles. We use DAG for
brevity.

Absence of directed cycles means that, following arrows in the
graph, it is impossible to return to any point.

Graphical models based on DAGs have proved fundamental and
useful in a wealth of interesting applications, including expert
systems, genetics, complex biomedical statistics, causal analysis,
and machine learning.
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Markov properties for directed acyclic graphs

Example of a directed graph

Definition and examples
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Markov properties for directed acyclic graphs Definition and examples

Local directed Markov property

A semigraphoid relation L, satisfies the local Markov property (L)
w.r.t. a directed acyclic graph D if

Vae V:al,{nd(a)\pa(a)}| pa(a).

Here nd(«) are the non-descendants of «.
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Markov properties for directed acyclic graphs Definition and examples

Ordered Markov property

Suppose the vertices V of a DAG D are well-ordered in the sense
that they are linearly ordered in a way which is compatible with D,
i.e. so that

a€pa(f)=a<p.

We then say semigraphoid relation L, satisfies the ordered
Markov property (O) w.r.t. a well-ordered DAG D if

VaeV:al,{pr(a)\ pa(a)}| pa(a).

Here pr(a) are the predecessors of «, i.e. those which are before o
in the well-ordering..
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Markov properties for directed acyclic graphs Definition and examples

The global Markov property

A semigraphoid relation 1, satisfies the global Markov property
(G) w.rt. D if
AlpB|S=Al,B|S.

It holds for any DAG D and any semigraphoid relation 1, that all
directed Markov properties are equivalent:

(G) < (L) < (0).
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Markov properties for directed acyclic graphs Definition and examples

Factorisation

A probability distribution P over X = X\ factorizes over a DAG D
if its density or probability mass function f has the form

(F*) : f(X) = H f(Xv ’Xpa(v))v

veV
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Markov properties for directed acyclic graphs Definition and examples

Markov properties and factorization

In the directed case it is essentially always true that (F) holds if

and only if Il p satisfies (G),
so all directed Markov properties are equivalent to the factorization

property!

(F) = (6) < (L) = (0).
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Expert Systems

An expert system attempts to crystallise and codify knowledge of
experts into a tool, usable by non-specialist.

The knowledge base encodes the knowledge of the domain.

The inference engine consists of algorithms for processing
knowledge base and specific information to obtain conclusions.

Classical expert systems make model of expert.

Probabilistic expert systems model the domain and use Bayesian
reasoning.
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Expert Systems

Classification trees
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Not necessarily computerized. Can be constructed using e.g.
CART.

Steffen Lauritzen, University of Oxford Bayesian Networks and Expert Systems



Expert Systems

Production systems

Uses rules: IF (A1 & Az & ... & Ax) THEN B; for example
» |F the animal has hair THEN it is a mammal.
» |F the animal gives milk THEN it is a mammal.
» IF the animal has feathers THEN it is a bird.
» IF the animal flies AND it lays eggs THEN it is a bird.

Inference “chaining” (forwards and backwards)
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Expert Systems

Certainty factors

CF(C) —»
c

cr “F(D C)

CF(D|A%B)

CF(B) —» n

Production rules with “certainty factor”. Need calculus to combine
certainty factors.
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Expert Systems

Naive Bayes

Disease probabilities D used. F; are findings and P(F;| D) are
specified.
P(D|Fi,...,Fn) is calculated by Bayes' formula.
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Expert Systems

Directed graphical model, to be used for reasoning.

“Bayesian” because it reasons ‘“reversely”, from symptoms to
causes, in contrast to feedforward neural networks which were
common when BNs were introduced.
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Expert Systems
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Expert Systems

Formal definition

A Bayesian network represents the knowledge base as a directed
graphical model:

» A Directed Acyclic Graph D = (V, E);

» Nodes V represent (random) variables X,,v € V;

» Specify for all v € V: p(x [ Xpa(v)):

» Joint distribution is then p(x) = [],c\ P(xv [ Xpa(v))-

Inference engine exploits junction tree algorithm to calculate
p(x, | xg) for E C V since p(xg) = Zy:yEZXZ— p(y) has too many
terms.
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Expert Systems

Forensic identification

Disputed paternity: |s individual A the father of individual B?

Immigration cases: Is A the mother of B? Are A and B related at
all? If so, how?

Criminal cases: Did person A contribute to a given stain, found at
the scene of the crime? Who contributed to the
stain?

Disasters: Was A among the individuals found in a grave? How
many of a named subset of individuals were in the
grave? Who were found in a grave?
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Expert Systems

Human chromosomes
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23 pairs of chromosomes in nucleus of human cell.

One pair determines gender: male XY, female XX. Other 22 are
homologous pairs.

All are DNA molecules.
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Expert Systems

DNA molecules

A double helix composed by 4 different nucleotides:
C, A, G, and T, binding in pairs C—G and A-T.
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Expert Systems

STR markers

An area on a chromosome is a locus and the DNA composition on
that area is an allele.

A locus thus corresponds to a (random) variable and an allele to
its realised state.

A DNA marker is a known locus where the allele can be identified
in the laboratory.

Short Tandem Repeats (STR) are markers with alleles given by
integers. If an STR allele is 5, a certain word (e.g. CAGGTG) is
repeated exactly 5 times at that locus:

... CAGGTGCAGGTGCAGGTGCAGGTGCAGGTG...
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Expert Systems

Inheritance of DNA

The homologous chromosome pairs are inherited through the
process of forming gametes, known as meiosis:

A 10 8 11

: : : : Paternal

: : : : Maternal
B 8 6 14

A 8 6 11

: k k : Gamete 1
: ; ; y Gamete 2
B 10 8 14

A child receives one randomly chosen gamete from each parent to
form a new homologous pair.
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Expert Systems

DNA profile and genotypes

The genotype of an individual at a given locus is the unordered
pair of alleles at that locus. One cannot measure which allele
originated from the mother and which from the father.

The genotype is typically reported as (12, 14) or (A, B), so that
the smallest is mentioned first.

A DNA profile consists of measurements of the genotype at a
number of marker loci. Standard kits use 9 or 10 markers, but
occasionally more markers are measured.

Markers are generally chosen on different chromosomes, to avoid
problems of linkage, i.e. dependence created in the process of
meiosis.
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Expert Systems

Classical paternity case

» DNA profiles of mother, a child, and a male individual, known
as the putative father. Denote this evidence by E.

» Query @ to be investigated :
Is the putative father equal to the true father?

» Weight of evidence reported as a likelihood ratio:

[ P(E|Q = true)
- P(E|Q = false)’
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Expert Systems

Using Bayesian networks

» Make BN with P(E| Q@ = true) determined by laws of
inheritance and P(E | Q = false) assuming random genes of
putative father.

> Let P(Q = true) = P(Q = false) so we have

[ — P(E|Q@ =true)  P(Q =truelE)
~ P(E|Q =false) P(Q=false|E)

and compute the latter by probability propagation.

We can make a network for each independent marker and multiply
likelihood ratios, or we can make a network incorporating all
markers at once.
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Expert Systems

Object-oriented specification of BN

» Objects are instances of BNs of certain class
» Objects have input nodes and output nodes, and also ordinary
BN nodes

» Instances of a given class have identical conditional probability
tables for non-input nodes

» Objects are connected by directed links from output nodes to
input nodes. The links represent identification of nodes, so
nodes must be of same type and have the same states.
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Expert Systems

OOBN for paternity case: single marker
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Each node represents itself a Bayesian network.
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Expert Systems
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Expert Systems

Faircoin
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Represents a coin, used to choose allele under meiosis
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Expert Systems

Meiosis
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meiosis selected

Represents the transmission of allele through meiosis
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Expert Systems

Who is the father?
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Is the allele from the putative father or random?
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Expert Systems
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Observation of the smallest and largest allele
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Expert Systems

Expanded OOBN
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Expert Systems
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Mother: (15, 16), child: (15,19), male: (19, 19);
L = 92.03/7.97 = 11.55.
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Expert Systems

Indirect evidence: only brother available
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Brother of pf: (19,19); L = 86.25/13.75 = 6.27.
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Expert Systems

Mutation

el
Rl Edt View Nework Optons Windows Wizsris Hep
[Dl=lE] »s x| sz 2 5

2 mutation [-[o0x] |

glela(8| [V olelk(om@l & +|-| M| = F

2 outg

Edit_Functions View

Expression [ (mutaton, other_alele, ia)

other alele
int 2 13

| mut? | false | true | false | tue

12 : ]

14 15 i 16 17
false | fue | false  tue | false | tue | fals

1| | F

>
2 nodes selected (total CPT size = 2664)

Possible mutation in transmission of alleles

zen, University of Oxford

Bayesian Networks and Expert Systems



Expert Systems

Mutation in male germline
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L =91.83/8.17 = 11.24.
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Expert Systems

Body identification

Identification of a single dead body is not very different for
paternity cases.

For example, if a missing person is known to be a specific member
of a family (e.g. the father of two children) and DNA profiles can
be found for the body, the mother, and the two children, a minor
modification of the paternity network yields the solution.

Problems of identification involving more than one body, such as in
mass graves and in disasters are more difficult because of their
complexity.

Steffen Lauritzen, University of Oxford Bayesian Networks and Expert Systems



Expert Systems

Unidentified body
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Is the body father of the two children? Same data as for paternity.
Second child (16, 19); L = 95.51/4.49 = 21.27.
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