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A d-dimensional random vector X = (X1, . . . ,Xd) has a
multivariate Gaussian distribution or normal distribution on Rd if
there is a vector ξ ∈ Rd and a d × d matrix Σ such that

λ>X ∼ N (λ>ξ, λ>Σλ) for all λ ∈ Rd . (1)

We then write X ∼ Nd(ξ,Σ).

It holds that

Xi ∼ N (ξi , σii ), Cov(Xi ,Xj) = σij .

Hence ξ is the mean vector and Σ the covariance matrix of the
distribution.
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Density of multivariate Gaussian

If Σ is positive definite, i.e. if λ>Σλ > 0 for λ 6= 0, the distribution
has density on Rd

f (x | ξ,Σ) = (2π)−d/2(det K )1/2e−(x−ξ)>K(x−ξ)/2, (2)

where K = Σ−1 is the concentration matrix of the distribution.
Since a positive semidefinite matrix is positive definite iff it is
invertible, we then also say that Σ is regular.

Steffen Lauritzen and Helene Gehrmann University of Oxford Graphical Gaussian Models



The multivariate Gaussian Distribution
The Wishart distribution

Gaussian graphical models

Definition
Basic properties
Marginal and conditional distributions
Gaussian likelihoods
Maximizing the likelihood

Adding independent Gaussians yields a Gaussian

If X ∼ Nd(ξ1,Σ1) and X2 ∼ Nd(ξ2,Σ2) and X1⊥⊥X2

X1 + X2 ∼ Nd(ξ1 + ξ2,Σ1 + Σ2).

Linear transformations preserve Gaussianity:

Y = AX + b ∼ Nr (Aξ + b,AΣA>).
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Partition X , ξ, K and Σ as

ξ =

(
ξ1

ξ2

)
, K =

(
K11 K12

K21 K22

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
Then, if X ∼ Nd(ξ,Σ) it holds that X2 ∼ Ns(ξ2,Σ22).

If Σ22 is regular, it further holds that

X1 |X2 = x2 ∼ Nr (ξ1|2,Σ1|2),

where

ξ1|2 = ξ1 + Σ12Σ−1
22 (x2 − ξ2) = ξ1 − K−1

11 K12(x2 − ξ2)

and
Σ1|2 = Σ11 − Σ12Σ−1

22 Σ21 = (K11)−1.
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Consider the case where ξ = 0 and a sample
X 1 = x1, . . . ,X n = xn from a multivariate Gaussian distribution
Nd(0,Σ) with Σ regular. Using (2), we get the likelihood function

L(K ) = (2π)−nd/2(det K )n/2e−
∑n

ν=1(xν)>Kxν/2

∝ (det K )n/2e−
∑n

ν=1 tr{Kxν(xν)>}/2

= (det K )n/2e− tr{K
∑n

ν=1 xν(xν)>}/2

= (det K )n/2e− tr(Kw)/2. (3)

where

W =
n∑
ν=1

X ν(X ν)>

is the matrix of sums of squares and products.
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Writing the trace out

tr(KW ) =
∑

i

∑
j

kijWji

emphasizes that it is linear in both K and W and we can recognize
this as a linear and canonical exponential family with K as the
canonical parameter and −W /2 as the canonical sufficient
statistic. Thus, the likelihood equation becomes

E(−W /2) = −nΣ/2 = −w/2

since E(W ) = nΣ. Solving, we get

K̂−1 = Σ̂ = w/n

in analogy with the univariate case.
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Rewriting the likelihood function as

log L(K ) =
n

2
log(det K )− tr(Kw)/2

we can of course also differentiate to find the maximum, leading to
the equation

∂

∂kij
log(det K ) = wij/n,

which in combination with the previous result yields

∂

∂K
log(det K ) = K−1.

The latter can also be derived directly by writing out the
determinant, and it holds for any non-singular square matrix, i.e.
one which is not necessarily positive definite.

Steffen Lauritzen and Helene Gehrmann University of Oxford Graphical Gaussian Models



The multivariate Gaussian Distribution
The Wishart distribution

Gaussian graphical models

Definition
Basic properties
Wishart density

The Wishart distribution is the sampling distribution of the matrix
of sums of squares and products. More precisely:

A random d × d matrix W has a d-dimensional Wishart
distribution with parameter Σ and n degrees of freedom if

W
D
=

n∑
i=1

X ν(X ν)>

where X ν ∼ Nd(0,Σ). We then write

W ∼ Wd(n,Σ).

The Wishart is the multivariate analogue to the χ2:

W1(n, σ2) = σ2χ2(n).

If W ∼ Wd(n,Σ) its mean is E(W ) = nΣ.
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If W1 and W2 are independent with Wi ∼ Wd(ni ,Σ), then

W1 + W2 ∼ Wd(n1 + n2,Σ).

If A is an r × d matrix and W ∼ Wd(n,Σ), then

AWA> ∼ Wr (n,AΣA>).

For r = 1 we get that when W ∼ Wd(n,Σ) and λ ∈ Rd ,

λ>Wλ ∼ σ2
λχ

2(n),

where σ2
λ = λ>Σλ.
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If W ∼ Wd(n,Σ), where Σ is regular, then W is regular with
probability one if and only if n ≥ d .

When n ≥ d the Wishart distribution has density

fd(w | n,Σ)

= c(d , n)−1(det Σ)−n/2(det w)(n−d−1)/2e− tr(Σ−1w)/2

for w positive definite, and 0 otherwise.

The Wishart constant c(d , n) is

c(d , n) = 2nd/2(2π)d(d−1)/4
d∏

i=1

Γ{(n + 1− i)/2}.
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Consider X = (Xv , v ∈ V ) ∼ NV (0,Σ) with Σ regular and
K = Σ−1.
The concentration matrix of the conditional distribution of
(Xα,Xβ) given XV \{α,β} is

K{α,β} =

(
kαα kαβ
kβα kββ

)
,

implying

Cov(Xα,Xβ|XV \{α,β}) = (K−1)αβ = −kαβ/(kααkββ − k2
αβ).

Hence
α⊥⊥β |V \ {α, β} ⇐⇒ kαβ = 0.

Thus the dependence graph G(K ) of a regular Gaussian
distribution is given by

α 6∼ β ⇐⇒ kαβ = 0.
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S(G) denotes the symmetric matrices A with aαβ = 0 unless α ∼ β
and S+(G) their positive definite elements.

A Gaussian graphical model for X specifies X as multivariate
normal with K ∈ S+(G) and otherwise unknown.

Note that the density then factorizes as

log f (x) = constant− 1

2

∑
α∈V

kααx2
α −

∑
{α,β}∈E

kαβxαxβ,

hence no interaction terms involve more than pairs..

This is different from the discrete case and generally makes things
easier.
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Mathematics marks

Examination marks of 88 students in 5 different mathematical
subjects. The empirical concentration matrix is

Mechanics Vectors Algebra Analysis Statistics
Mech 5.24 −2.44 −2.74 0.01 −0.14
Vec −2.44 10.43 −4.71 −0.79 −0.17
Alg −2.74 −4.71 26.95 −7.05 −4.70
An 0.01 −0.79 −7.05 9.88 −2.02
Stats −0.14 −0.17 −4.70 −2.02 6.45
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Graphical model for mathmarks

Mechanics

Vectors

Algebra

Analysis

Statistics
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This analysis is from Whittaker (1990).
We have An, Stats⊥⊥Mech,Vec |Alg.
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Frets’ heads

This example is concerned with a study of heredity of head
dimensions (Frets 1921). Lengths Li and breadths Bi of the heads
of 25 pairs of first and second sons are measured. Previous
analyses by Whittaker (1990) support the graphical model:

e

e e

eB1

L1

B2

L2
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The likelihood function based on a sample of size n is

L(K ) ∝ (det K )n/2e− tr(Kw)/2,

where w is the Wishart matrix of sums of squares and products,
W ∼ W|V |(n,Σ) with Σ−1 = K ∈ S+(G).

Define the matrices Au, u ∈ V ∪ E as those with elements

au
ij =


1 if u ∈ V and i = j = u

1 if u ∈ E and u = {i , j}
0 otherwise.

.
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Then, as K ∈ S(G),

K =
∑
v∈V

kv Av +
∑
e∈E

keAe (4)

and hence

tr(Kw) =
∑
v∈V

kv tr(Av w) +
∑
e∈E

ke tr(Aew)

leading to the log-likelihood function

l(K ) = log L(K ) ∼ n

2
log(det K )− tr(Kw)/2

=
n

2
log(det K )

−
∑
v∈V

kv tr(Av w)/2 +
∑
e∈E

ke tr(Aew)/2.
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Hence we can identify the family as a (regular and canonical)
exponential family with − tr(AuW )/2, u ∈ V ∪ E as canonical
sufficient statistics.

The likelihood equations can be obtained from this fact or by
differentiation, combining the fact that

∂

∂ku
log det(K ) = tr(AuΣ)

with (4). This eventually yields the likelihood equations

tr(Auw) = n tr(AuΣ), u ∈ V ∪ E .
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The likelihood equations

tr(Auw) = n tr(AuΣ), u ∈ V ∪ E .

can also be expressed as

nσ̂vv = wvv , nσ̂αβ = wαβ, v ∈ V , {α, β} ∈ E .

We should remember the model restriction Σ−1 ∈ S+(G).

This ‘fits variances and covariances along nodes and edges in G’ so
we can write the equations as

nΣ̂cc = wcc for all cliques c ∈ C(G),

hence making the equations analogous to the discrete case.

General theory of exponential families ensure the solution to be
unique, provided it exists.
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For K ∈ S+(G) and c ∈ C, define the operation of ‘adjusting the
c-marginal’ as follows. Let a = V \ c and

TcK =

(
n(wcc)−1 + Kca(Kaa)−1Kac Kca

Kac Kaa

)
. (5)

This operation is clearly well defined if wcc is positive definite.

Recall the identity

(K11)−1 = Σ11 − Σ12Σ−1
22 Σ21.

Switching the role of K and Σ yields

Σ11 = (K−1)11 =
(
K11 − K12K−1

22 K21

)−1

and hence

Σcc = (K−1)cc =
{

Kcc − Kca(Kaa)−1Kac

}−1
.
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Thus the C -marginal covariance Σ̃cc corresponding to the adjusted
concentration matrix becomes

Σ̃cc = {(TcK )−1}cc
=

{
n(wcc)−1 + Kca(Kaa)−1Kac − Kca(Kaa)−1Kac

}−1

= wcc/n,

hence TcK does indeed adjust the marginals. From (5) it is seen
that the pattern of zeros in K is preserved under the operation Tc ,
and it can also be seen to stay positive definite.

In fact, Tb scales proportionally in the sense that

f {x | (TcK )−1} = f (x |K−1)
f (xc |wcc/n)

f (xc |Σcc)
.

This clearly demonstrates the analogy to the discrete case.
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Next we choose any ordering (c1, . . . , ck) of the cliques in G.
Choose further K0 = I and define for r = 0, 1, . . .

Kr+1 = (Tc1 · · ·Tck
)Kr .

Then we have: Consider a sample from a covariance selection
model with graph G. Then

K̂ = lim
r→∞

Kr ,

provided the maximum likelihood estimate K̂ of K exists.
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