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Chapter 6
Estimation of Structure

6.1 Estimation of Structure and Bayes Factors

Previous chapters have considered the situation where the graph G defining the
model has been known and the inference problems were concerned with an un-
known Pθ with θ ∈ Θ . This chapter discusses inference concerning the graph G ,
specifying only a family Γ of possible graphs.

It is important to ensure that any methods used must scale well with data size
we typically need to consider many structures and also huge collections of high-
dimensional data.

What we here choose to term structure estimation is also known under other
names as model selection (mainstream statistics), system identification (engineer-
ing), or structural learning (AI or machine learning.) Different situations occur de-
pending on the type of assumptions concerning Γ Common assumptions include
that Γ is the set of undirected graphs over V ; the set of chordal graphs over V ; the
set of forests over V ; the set of trees over V ; the set of directed acyclic graphs over
V ; or potentially other types of conditional independence structure.

Why estimation of structure?

It may be worthwhile to dwell somewhat on the rationale behind structure estima-
tion. We think of it as a method to get a quick overview of relations between a huge
set of variables in a complex stochastic system and see it in many ways as a parallel
to e.g. histograms or density estimation which gives a rough overview of the features
of univariate data. It will typically be used in areas such as, for example, general data
mining, identification of gene regulatory networks, or for reconstructing family trees
from DNA information. Established methods exist and are in daily routine use, but
there is a clear need for better understanding of their statistical properties.

We begin by showing a few simple examples of structure estimation to motivate
that the issue is not a priori impossible.
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80 6 Estimation of Structure

Example 6.1 (Markov mesh model). Figure 6.1 shows the graph of a so-called
Markov mesh model with 36 variables. All variables are binary and the only variable

Fig. 6.1 Graph of a Markov mesh model with 36 binary variables.

without parents, in the upper left-hand corner is uniformly distributed. The remain-
ing variables on the upper and left sides of the 6×6 square have a single parent and
the conditional probability that it is in a given state is 3/4 if the state is the same as
its parent. The remaining nodes have two parents and if these are identical, the child
with have that state with probability 3/4 whereas it will otherwise follow the upper
parent with probability 2/3.

Figure 6.2 shows two different attempts of estimating the structure based on the
same 10,000 simulated cases. The two methods are to be described in more de-
tail later, but it is apparent that the estimated structure in both cases have a strong
similarity to the true one. In fact, one of the methods reconstructs the Markov mesh
model perfectly. Both methods used search for a DAG structure which is compatible
with the data.

Fig. 6.2 Structure estimate of Markov mesh model from 10000 simulated cases. The left-hand
side shows the estimate using the crudest algorithm (PC) implemented in HUGIN. The right-hand
side the Bayesian estimate using greedy equivalence search (GES) as implemented in WINMINE.

Example 6.2 (Tree model). The graph of this example has a particular simple struc-
ture which is that of a rooted tree. Since a rooted tree with arrows pointing away
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from a root is a perfect DAG, the associated structure is equivalent to the corre-
sponding undirected tree. The state at the root is uniformly distributed and any other
node reproduces the state of the parent node with probability 3/4.

Figure 6.3 shows the structure estimate of the tree based on 10,000 simulated
cases and using the same methods as for the Markov mesh model. In both cases,
the method has attempted to estimate the structure based on the assumption that the
structure was a DAG. Note that in this case it is the first method which reconstruncts
correctly whereas there are too many links in the second case.

Fig. 6.3 Estimates of a tree model with 30 variables based on 10000 observations. The graph to
the left represents the estimate using the PC algorithm and yields a 100% correct reconstruction.
The graph to the right represents the Bayesian estimate using GES.

Example 6.3 (Chest clinic). The next example is taken from Lauritzen and Spiegel-
halter (1988) and reflects the structure involving risk factors and symptoms for lung-
disease. The (fictitious) description given by the authors of the associated medical
knowledge is as follows

“Shortness–of–breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis, or
none of them, or more than one of them. A recent visit to Asia increases the chances of
tuberculosis, while smoking is known to be a risk factor for both lung cancer and bron-
chitis. The results of a single chest X–ray do not discriminate between lung cancer and
tuberculosis, as neither does the presence or absence of dyspnoea.”

The actual probabilities involved in this example are given in the original reference
and we abstain from repeating them here.

Figure 6.4 displays the network structure reflecting the knowledge as given above
and three different structure estimates. Note that this problem is obviously more
difficult than the previous examples, in particular because some of the diseases are
rare and larger data sets as well as more refined structure estimators are needed to
even get close to the original structure.
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Fig. 6.4 A Bayesian network model for lung disease and estimates of the model based on simulated
cases. The structure generating the data is in the upper left corner. Then, clockwise, estimates
using the same data but different estimation algorithms: the PC algorithm, Bayesian GES, the NPC
algorithm. In the latter case 100,000 cases were used.

Types of approach

Essentially all structure estimation methods combine a specification of potentially
interesting structures with a way of judging the adequacy of structure and a search
strategy, which evaluates a large number of space of possible structures.

As detailed further in the following sections, methods of judging adequacy in-
clude using

• tests of significance;
• penalised likelihood scores;

Iκ(G ) = log L̂−κ dim(G )

with κ = 1 for AIC Akaike (1974), or κ = 1
2 logN for BIC Schwarz (1978);

• Bayesian posterior probabilities.

The search strategies are more or less based on heuristics, which all attempt to over-
come the fundamental problem that a crude global search among all potential struc-
tures is not feasible as the number of structures is astronomical.

elaborate on each of these or rearrange
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Bayes factors

For G ∈Γ , ΘG is associated parameter space so that P factorizes w.r.t. G if and only
if P = Pθ for some θ ∈ΘG . LG is prior law on ΘG .

The Bayes factor (likelihood ratio) for discriminating between G1 and G2 based
on observations X (n) = x(n) is

BF(G1 : G2) =
f (x(n) |G1)
f (x(n) |G2)

,

where
f (x(n) |G ) =

∫
ΘG

f (x(n) |G ,θ)LG (dθ)

is known as the marginal likelihood of G .

Posterior distribution over graphs

If π(G ) is a prior probability distribution over a given set of graphs Γ , the posterior
distribution is determined as

π
∗(G ) = π(G |x(n)) ∝ f (x(n) |G )π(G )

or equivalently
π∗(G1)
π∗(G2)

= BF(G1 : G2)
π(G1)
π(G2)

.

Bayesian analysis looks for the MAP estimate G ∗ maximizing π∗(G ) over Γ , or
attempts to sample from the posterior using e.g. Monte-Carlo methods.

6.2 Estimating Trees and Forests

Estimating trees

Let us assume that the distribution P of X = Xv,v ∈V over a discrete state space X
factorizes w.r.t. an unknown tree τ and that we have observations X1 = x1, . . . ,Xn =
xn as independent and identically distributed according to P.

Chow and Liu (1968) showed that the maximum likelihood estimate τ̂ of τ is a
maximal weight spanning tree (MWST), where the weight of a tree τ is

λ (τ) = ∑
e∈E(τ)

λn(e) = ∑
e∈E(τ)

Hn(e)

and Hn(e) is the empirical cross-entropy or mutual information between endpoint
variables of the edge e = {u,v}:
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Hn(e) = ∑
xuxv

n(xu,xv)
n

log
n(xu,xv)/n

n(xu)n(xv)/n2 = ∑
xu,xv

n(xu,xv) log
n(xu,xv)

n(xu)n(xv)
.

This result is easily extended to Gaussian graphical models, just with the weight
λn(e) of an edge in a tree determined as any strictly increasing function of the em-
pirical cross-entropy along the edge

Hn(e) =−1
2

log(1− r2
e),

where r2
e is empirical correlation coeffient along edge e = {u,v}

r2
e =

(∑n
i=1 xi

uxi
v)

2

(∑n
i=1(xi

u)2)(∑n
i=1(xi

v)2)
=

w2
uv

wuuwvv
.

To see this, use the expression (4.20) for the determinant of the MLE which in
the case of a tree reduces to

det(K̂) = ∏v∈V (wvv)deg(v)−1

∏e∈E det(we)
nd

∝ ∏
v∈V

(wvv)−1
∏
{u,v}∈E

wuuwvv

wuuwvv−w2
uv

∝ (1− r2
e)
−1.

From (4.16) we know that the maximized likelihood function for a fixed tree is pro-
portional to a power of this determinant and hence is maximized when the logarithm
of the determinant is maximized. But since we then have

logdet K̂(τ) = 2 ∑
e∈E(τ)

Hn(e) = 2λ (τ),

maximizing L̂(τ) over all possible trees is equivalent to maximizing λ (τ).
Highest AIC or BIC scoring forest also available as MWSF, with modified

weights
wpen

n (e) = nwn(e)−κndfe,

with κn = 2 for AIC, κn = logn for BIC and dfe the degrees of freedom for indepen-
dence along e.

Fast algorithms Kruskal Jr. (1956) compute maximal weight spanning tree (or
forest) from weights W = (wuv,u,v ∈V ).

Chow and Wagner (1978) show a.s. consistency in total variation of P̂: If P
factorises w.r.t. τ , then

sup
x
|p(x)− p̂(x)| → 0 for n→ ∞,

so if τ is unique for P, τ̂ = τ for all n > N for some N.
If P does not factorize w.r.t. a tree, P̂ converges to closest tree-approximation P̃

to P (Kullback-Leibler distance).
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Strong hyper Markov prior laws

For strong hyper Markov prior laws, X (n) is itself marginally Markov so

f (x(n) |G ) =
∏Q∈Q f (x(n)

Q |G )

∏S∈S f (x(n)
S |G )νG (S)

, (6.1)

where Q are the prime components and S the minimal complete separators of G .

Hyper inverse Wishart laws

Denote the normalisation constant of the hyper inverse Wishart density as

h(δ ,Φ ;G ) =
∫

S +(G )
(detK)δ/2e− tr(KΦ) dK,

i.e. the usual Wishart constant if Q = C is a clique.
Combining with the Gaussian likelihood, it is easily seen that for Gaussian graph-

ical models we have

f (x(n) |G ) =
h(δ +n,Φ +W n;G )

h(δ ,Φ ;G )
.

Comparing with (6.1) leads to a similar factorization of the normalising constant

h(δ ,Φ ;G ) =
∏Q∈Q h(δ ,ΦQ;GQ)

∏S∈S h(δ ,ΦS;S)νG (S) .

For chordal graphs all terms in this expression reduce to known Wishart constants,
and we can thus calculate the normalization constant explicitly.

In general, Monte-Carlo simulation or similar methods must be used Atay-Kayis
and Massam (2005).

The marginal distribution of W (n) is (weak) hyper Markov w.r.t. G . It was termed
the hyper matrix F law by Dawid and Lauritzen (1993).

Bayes factors for forests

Trees and forests are decomposable graphs, so for a forest φ we get

f (φ |x(n)) ∝
∏e∈E(φ) f (x(n)

e )

∏v∈V f (x(n)
v )dφ (v)−1

,

since all minimal complete separators are singletons and νφ ({v}) = dφ (v)−1.
Multiplying the right-hand side with ∏v∈V f (x(n)

v ) yields
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∏e∈E(φ) f (x(n)
e )

∏v∈V f (x(n)
v )dφ (v)−1

= ∏
v∈V

f (x(n)
v )∏

e∈φ

BF(e),

where BF(e) is the Bayes factor for independence along the edge e:

BF(e) =
f (x(n)

u ,x(n)
v )

f (x(n)
u ) f (x(n)

v )
.

Thus the posterior distribution of φ is

π
∗(φ) ∝ ∏

e∈E(φ)
BF(e).

In the case where φ is restricted to contain a single tree, the normalization constant
for this distribution can be explicitly obtained via the Matrix Tree Theorem, see e.g.
Bollobás (1998).

Bayesian analysis

MAP estimates of forests can thus be computed using an MWSF algorithm, using
w(e) = logBF(e) as weights.

Algorithms exist for generating random spanning trees Aldous (1990), so full
posterior analysis is in principle possible for trees.

These work less well for weights occurring with typical Bayes factors, as most
of these are essentially zero, so methods based on the Matrix Tree Theorem seem
currently more useful.

Only heuristics available for MAP estimators or maximizing penalized likeli-
hoods such as AIC or BIC, for other than trees.

Some challenges for undirected graphs

• Find feasible algorithm for (perfect) simulation from a distribution over chordal
graphs as

p(G ) ∝
∏C∈C w(C)

∏S∈S w(S)νG (S) ,

where w(A),A⊆V are a prescribed set of positive weights.
• Find feasible algorithm for obtaining MAP in decomposable case. This may not

be universally possible as problem most likely is NP-complete.
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6.3 Learning Bayesian networks

6.3.1 Model search methods

Directed hyper Markov property

L = L (θ) is directed hyper Markov w.r.t. a DAG D if θ is directed Markov on D
for all θ ∈Θ and

θv | pa(v)⊥⊥L θnd(v) |θpa(v).

A law L is directed hyper Markov on D if and only if LA is hyper Markov on
(DA)m for any ancestral set A⊆V .

L is strongly directed hyper Markov if in addition θv | pa(v)⊥⊥L θpa(v) for all v or,
equivalently if the conditional distributions θv | pa(v),v∈V are mutually independent.

Graphically, this is most easily displayed by introducing one additional parent
θv | pa(v) for every vertex V in D , so then

f (x |θ) = ∏
v∈V

f (xv |xpa(v),θv | pa(v)).

Exploiting independence and taking expectations over θ yields that also marginally,

f (x |D) =
∫

ΘD

f (x |θ)LD (θ) = ∏
v∈V

f (xv |xpa(v)).

If L is strongly directed hyper Markov and L ∗ it holds that also the posterior
law L ∗ is is strongly directed hyper Markov and

L ∗(θv | pa(v)) ∝ f (xv |xpa(v),θv | pa(v))L (θv | pa(v))

Spiegelhalter and Lauritzen (1990).

Markov equivalence

D and D ′ are equivalent if and only if:

1. D and D ′ have same skeleton (ignoring directions)
2. D and D ′ have same unmarried parents

so s - s
s
@

@R? s ≡ s - s s
s
?@
@I

but

s - s -

s
@

@R? s 6≡ s - s - s
s
6@

@R
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Searching equivalence classes

In general, there is no hope of distinguishing Markov equivalent DAGs, so D can at
best be identified up to Markov equivalence.

The number Dn of unlabelled DAGs with n vertices is given by the recursion
Robinson (1977)

Dn =
n

∑
i=1

(−1)i+1
(

n
i

)
2i(n−i)Dn−i

which grows superexponentially. For n = 10, Dn≈ 4.2×1018. The number of equiv-
alence classes is smaller, but is conjectured still to grow superexponentially.

Conjugate priors for DAGs

In the discrete case, the obvious conjugate prior is for fixed v to let

{θv | paD (v)(xv |x∗paD (v)),xv ∈Xv}

be Dirichlet distributed and independent for v ∈ V and x∗paD (v) ∈XpaD (v) Spiegel-
halter and Lauritzen (1990).

We can derive these Dirichlet distributions from a fixed master Dirichlet distri-
bution D(α), where α = α(x),x ∈X , by letting

{θv | pa(v)(xv |x∗paD (v))} ∼D(α(xv,x∗paD (v)),

where as usual α(xa) = ∑y:ya=xa α(y).
Typically, α is specified by letting α = λ p0(x) where p0 is an initial guess on the

joint distribution, for example specified through a DAG D0, and λ is the equivalent
sample size for the prior information.

The values α(xv,x∗paD (v)) = λ p0(xv,x∗paD (v)) can then be calculated by probability
propagation.

Common default values is λ = 1 and α(x) = |X |−1.
A similar construction is possible in the Gaussian case using the Wishart dis-

tribution Geiger and Heckerman (1994) and for mixed discrete Gaussian networks
Bøttcher (2001), the latter implemented in the R-package DEAL Bøttcher and Deth-
lefsen (2003).

In all cases, it was shown Geiger and Heckerman (1997, 2002) that prior distri-
butions constructed in this way are the only distributions which are

1. modular:
paD (v) = paD ′(v)⇒ θv | paD (v) ∼ θv | paD ′ (v)

;

2. score equivalent:

D ≡D ′⇒ f (x(n) |D) = f (x(n) |D ′).
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Marginal likelihood Bayes factors derived from these strongly directed hyper
Dirichlet priors have a simple form

f (x(n) |D) = ∏
v

∏
xpa(v)

Γ (α(xpaD (v)))
Γ (α(xpaD (v))+n(xpaD (v)))

×∏
xv

Γ (α(xv∪paD (v))+n(xv∪paD (v)))
Γ (α(xv∪paD (v)))

.

Cooper and Herskovits (1992); Heckerman et al (1995)
Challenge: Find good algorithm for sampling from the full posterior over DAGs

or equivalence classes of DAGs. Issue: prior uniform over equivalence classes or
over DAGs?

Greedy equivalence class search

1. Initialize with empty DAG
2. Repeatedly search among equivalence classes with a single additional edge and

go to class with highest score - until no improvement.
3. Repeatedly search among equivalence classes with a single edge less and move

to one with highest score - until no improvement.

For BIC or Bayesian posterior score with directed hyper Dirichlet priors, this algo-
rithm yields consistent estimate of equivalence class for P. Chickering (2002)

6.3.2 Constraint-based search

Another alternative search algorithm is known as constraint based search.
Essentially, the search methods generate queries of the type “A⊥⊥B |S?”, and

the answer to such a query divides Γ into those graphs conforming with the query
and those that do not.

These type of methods were originally designed by computer scientists in the
context where P was fully available, so queries could be answered without error.

The advantage of this type of method is that relatively few queries are needed to
identify a DAG D (or rather its equivalence class).

The disadvantage is that there seems to be no coherent and principled method to
answer the query in the presence of statistical uncertainty, which is computable.

SGS and PC algorithms

SGS-algorithm Spirtes et al (1993):
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Step 1: Identify skeleton using that, for P faithful,

u 6∼ v ⇐⇒ ∃S⊆V \{u,v} : Xu⊥⊥Xv | XS.

Begin with complete graph, check for S = /0 and remove edges when indepen-
dence holds. Then continue for increasing |S|.
PC-algorithm (same reference) exploits that only S with S ⊆ bd(u) \ v or S ⊆
bd(v)\u needs checking where bd refers to current skeleton.

Step 2: Identify directions to be consistent with independence relations found in
Step 1.

Exact properties of PC-algorithm

If P is faithful to DAG D , PC-algorithm finds D ′ equivalent to D .
It uses N independence checks where N is at most

N ≤ 2
(
|V |
2

) d

∑
i=0

(
|V |−1

i

)
≤ |V |

d+1

(d−1)!
,

where d is the maximal degree of any vertex in D .
So worst case complexity is exponential, but algorithm fast for sparse graphs.
Sampling properties are less well understood although consistency results exist.
The general idea has these elements:

1. When a query is decided negatively, ¬(A⊥⊥B |S), it is taken at face value;
When a query is decided positively, A⊥⊥B |S, it is recorded with care;

2. If at some later stage, the PC algorithm would remove an edge so that a negative
query ¬(A⊥⊥B |S) would conflict with A⊥D B |S, the removal of this edge is
suppressed.
This leads to unresolved queries which are then passed to the user.

6.4 Summary

Types of approach

• Methods for judging adequacy of structure such as

– Tests of significance
– Penalised likelihood scores

Iκ(G ) = log L̂−κ dim(G )

with κ = 1 for AIC Akaike (1974), or κ = 1
2 logn for BIC Schwarz (1978).

– Bayesian posterior probabilities.
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• Search strategies through space of possible structures, more or less based on
heuristics.

Bayes factors For G ∈ Γ , ΘG is associated parameter space so that P factorizes
w.r.t. G if P = Pθ for some θ ∈ΘG . LG is prior law on ΘG .

The Bayes factor for discriminating between G1 and G2 based on X (n) = x(n) is

BF(G1 : G2) =
f (x(n) |G1)
f (x(n) |G2)

,

where
f (x(n) |G ) =

∫
ΘG

f (x(n) |G ,θ)LG (dθ)

is known as the marginal likelihood of G . Posterior distribution over graphs If π(G )
is a prior probability distribution over a given set of graphs Γ , the posterior distri-
bution is determined as

π
∗(G ) = π(G |x(n)) ∝ f (x(n) |G )π(G )

or equivalently
π∗(G1)
π∗(G2)

= BF(G1 : G2)
π(G1)
π(G2)

.

The BIC is an O(1)-approximation to logBF using Laplace’s method of integrals
on the marginal likelihood.

Bayesian analysis looks for the MAP estimate G ∗ maximizing π∗(G ) over Γ , or
attempts to sample from the posterior using e.g. Monte-Carlo methods. Estimating
trees Assume P factorizes w.r.t. an unknown tree T . MLE τ̂ of T has maximal
weight, where the weight of τ is

w(τ) = ∑
e∈E(τ)

wn(e) = ∑
e∈E(τ)

Hn(e)

and Hn(e) is the empirical cross-entropy or mutual information between endpoint
variables of the edge e = {u,v}. For Gaussian trees this becomes

wn(e) =−1
2

log(1− r2
e),

where r2
e is correlation coeffient along edge e = {u,v}.

Highest AIC or BIC scoring forest also available as MWSF, with modified
weights

wpen
n (e) = nwn(e)−κndfe,

with κn = 1 for AIC, κn = 1
2 logn for BIC and dfe the degrees of freedom for inde-

pendence along e.
Use maximal weight spanning tree (or forest) algorithm from weights W =

(wuv,u,v ∈V ).
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Hyper inverse Wishart laws Denote the normalisation constant of the hyper in-
verse Wishart density as

h(δ ,Φ ;G ) =
∫

S +(G )
(detK)δ/2e− tr(KΦ) dK,

The marginal likelihood is then

f (x(n) |G ) =
h(δ +n,Φ +W n;G )

h(δ ,Φ ;G )
.

where

h(δ ,Φ ;G ) =
∏Q∈Q h(δ ,ΦQ;GQ)

∏S∈S h(δ ,ΦS;S)νG (S) .

For chordal graphs all terms reduce to known Wishart constants.
In general, Monte-Carlo simulation or similar methods must be used Atay-Kayis

and Massam (2005).
Bayes factors for forests Trees and forests are decomposable graphs, so for a

forest φ we get

π
∗(φ) ∝

∏e∈E(φ) f (x(n)
e )

∏v∈V f (x(n)
v )dφ (v)−1

∝ ∏
e∈E(φ)

BF(e),

where BF(e) is the Bayes factor for independence along the edge e:

BF(e) =
f (x(n)

u ,x(n)
v )

f (x(n)
u ) f (x(n)

v )
.

MAP estimates of forests can thus be computed using an MWSF algorithm, using
w(e) = logBF(e) as weights.

When φ is restricted to contain a single tree, the normalization constant can be
explicitly obtained via the Matrix Tree Theorem, see e.g. Bollobás (1998).

Algorithms exist for generating random spanning trees Aldous (1990), so full
posterior analysis is in principle possible for trees.

Only heuristics available for MAP estimators or maximizing penalized likeli-
hoods such as AIC or BIC, for other than trees.


