Probability Propagation

Steffen Lauritzen, University of Oxford
Graphical Models, Lectures 9 and 10, Michaelmas Term 2009

November 13, 2009

Characterizing chordal graphs

The following are equivalent for any undirected graph \mathcal{G}.
(i) \mathcal{G} is chordal;
(ii) \mathcal{G} is decomposable;
(iii) All prime components of \mathcal{G} are cliques;
(iv) \mathcal{G} admits a perfect numbering;
(v) Every minimal (α, β)-separator are complete;
(vi) Cliques of \mathcal{G} can be arranged in a junction tree.

Algorithms associated with chordality

Maximum Cardinality Search (MCS) identifies whether a graph is chordal or not.

If a graph \mathcal{G} is chordal, MCS yields a perfect numbering of the vertices. In addition it finds the cliques of \mathcal{G} :
From an MCS numbering $V=\{1, \ldots,|V|\}$, let

$$
B_{\lambda}=\operatorname{bd}(\lambda) \cap\{1, \ldots, \lambda-1\}
$$

and $\pi_{\lambda}=\left|B_{\lambda}\right|$. A ladder vertex is either $\lambda=|V|$ or one with $\pi_{\lambda+1}<\pi_{\lambda}+1$. Let Λ be the set of ladder vertices.
The cliques are $C_{\lambda}=\{\lambda\} \cup B_{\lambda}, \lambda \in \Lambda$.

Junction tree

Let \mathcal{A} be a collection of finite subsets of a set V. A junction tree \mathcal{T} of sets in \mathcal{A} is andirected tree with \mathcal{A} as a vertex set, satisfying the junction tree property:

If $A, B \in \mathcal{A}$ and C is on the unique path in \mathcal{T} between A and B it holds that $A \cap B \subset C$.

If the sets in \mathcal{A} are pairwise incomparable, they can be arranged in a junction tree if and only if $\mathcal{A}=\mathcal{C}$ where \mathcal{C} are the cliques of a chordal graph.
The junction tree can be constructed directly from the MCS ordering $C_{\lambda}, \lambda \in \Lambda$.

The general problem

Factorizing density on $\mathcal{X}=\times_{v \in V} \mathcal{X}_{v}$ with V and \mathcal{X}_{v} finite:

$$
p(x)=\prod_{C \in \mathcal{C}} \phi_{C}(x)
$$

The potentials $\phi_{C}(x)$ depend on $x_{C}=\left(x_{v}, v \in C\right)$ only. Basic task to calculate marginal (likelihood)

$$
p^{\downarrow E}\left(x_{E}^{*}\right)=\sum_{y_{V \backslash E}} p\left(x_{E}^{*}, y_{V \backslash E}\right)
$$

for $E \subseteq V$ and fixed x_{E}^{*}, but sum has too many terms.
A second purpose is to get the prediction $p\left(x_{v} \mid x_{E}^{*}\right)=p\left(x_{v}, x_{E}^{*}\right) / p\left(x_{E}^{*}\right)$ for $v \in V$.

Computational structure

Algorithms all arrange the collection of sets \mathcal{C} in a junction tree \mathcal{T}. Hence, they works only if \mathcal{C} are cliques of chordal graph \mathcal{G}.
If the initial model is based on a DAG \mathcal{D}, the first step is to form the moral graph $\mathcal{G}=\mathcal{D}^{m}$, exploiting that if P factorizes w.r.t. \mathcal{D}, it also factorizes w.r.t. \mathcal{D}^{m}.

If \mathcal{G} is not chordal from the outset, triangulation is used to construct chordal graph \mathcal{G}^{\prime} with $E \subseteq E^{\prime}$. Again, if P factorizes w.r.t. \mathcal{G} it factorizes w.r.t. \mathcal{G}^{\prime}. This step is non-trivial and it is NP-complete to optimize.
When this has been done, the computations are executed by message passing.

The computational structure is set up in several steps:

1. Moralisation: Constructing \mathcal{D}^{m}, exploiting that if P factorizes over \mathcal{D}, it factorizes over \mathcal{D}^{m}.

The computational structure is set up in several steps:

1. Moralisation: Constructing \mathcal{D}^{m}, exploiting that if P factorizes over \mathcal{D}, it factorizes over \mathcal{D}^{m}.
2. Triangulation: Adding edges to find chordal graph $\tilde{\mathcal{G}}$ with $\mathcal{G} \subseteq \tilde{\mathcal{G}}$. This step is non-trivial (NP-complete) to optimize;

The computational structure is set up in several steps:

1. Moralisation: Constructing \mathcal{D}^{m}, exploiting that if P factorizes over \mathcal{D}, it factorizes over \mathcal{D}^{m}.
2. Triangulation: Adding edges to find chordal graph $\tilde{\mathcal{G}}$ with $\mathcal{G} \subseteq \tilde{\mathcal{G}}$. This step is non-trivial (NP-complete) to optimize;
3. Constructing junction tree: Using MCS, the cliques of $\tilde{\mathcal{G}}$ are found and arranged in a junction tree.

The computational structure is set up in several steps:

1. Moralisation: Constructing \mathcal{D}^{m}, exploiting that if P factorizes over \mathcal{D}, it factorizes over \mathcal{D}^{m}.
2. Triangulation: Adding edges to find chordal graph $\tilde{\mathcal{G}}$ with $\mathcal{G} \subseteq \tilde{\mathcal{G}}$. This step is non-trivial (NP-complete) to optimize;
3. Constructing junction tree: Using MCS, the cliques of $\tilde{\mathcal{G}}$ are found and arranged in a junction tree.
4. Initialization: Assigning potential functions ϕ_{C} to cliques.

The computational structure is set up in several steps:

1. Moralisation: Constructing \mathcal{D}^{m}, exploiting that if P factorizes over \mathcal{D}, it factorizes over \mathcal{D}^{m}.
2. Triangulation: Adding edges to find chordal graph $\tilde{\mathcal{G}}$ with $\mathcal{G} \subseteq \tilde{\mathcal{G}}$. This step is non-trivial (NP-complete) to optimize;
3. Constructing junction tree: Using MCS, the cliques of $\tilde{\mathcal{G}}$ are found and arranged in a junction tree.
4. Initialization: Assigning potential functions ϕ_{C} to cliques.

The complete process above is known as compilation.

Initialization

1. For every vertex $v \in V$ we find a clique $C(v)$ in the triangulated graph $\tilde{\mathcal{G}}$ which contains $\mathrm{pa}(v)$. Such a clique exists because $v \cup \mathrm{pa}(v)$ are complete in \mathcal{D}^{m} by construction, and hence in $\tilde{\mathcal{G}}$;

Initialization

1. For every vertex $v \in V$ we find a clique $C(v)$ in the triangulated graph $\tilde{\mathcal{G}}$ which contains $\mathrm{pa}(v)$. Such a clique exists because $v \cup \mathrm{pa}(v)$ are complete in \mathcal{D}^{m} by construction, and hence in $\tilde{\mathcal{G}}$;
2. Define potential functions ϕ_{C} for all cliques C in $\tilde{\mathcal{G}}$ as

$$
\phi_{C}(x)=\prod_{v: C(v)=C} p\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)
$$

where the product over an empty index set is set to 1 , i.e. $\phi_{C} \equiv 1$ if no vertex is assigned to C.

Initialization

1. For every vertex $v \in V$ we find a clique $C(v)$ in the triangulated graph $\tilde{\mathcal{G}}$ which contains $\mathrm{pa}(v)$. Such a clique exists because $v \cup \mathrm{pa}(v)$ are complete in \mathcal{D}^{m} by construction, and hence in $\tilde{\mathcal{G}}$;
2. Define potential functions ϕ_{C} for all cliques C in $\tilde{\mathcal{G}}$ as

$$
\phi_{C}(x)=\prod_{v: C(v)=C} p\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)
$$

where the product over an empty index set is set to 1 , i.e. $\phi_{C} \equiv 1$ if no vertex is assigned to C.
3. It now holds that

$$
p(x)=\prod_{C \in \mathcal{C}} \phi_{C}(x)
$$

Overview

This involves following steps

1. Incorporating observations: If $X_{E}=x_{E}^{*}$ is observed, we modify potentials as

$$
\phi_{C}\left(x_{C}\right) \leftarrow \phi_{C}(x) \prod_{e \in E \cap C} \delta\left(x_{e}^{*}, x_{e}\right)
$$

with $\delta(u, v)=1$ if $u=v$ and else $\delta(u, v)=0$. Then:

$$
p\left(x \mid X_{E}=x_{E}^{*}\right)=\frac{\prod_{C \in \mathcal{C}} \phi_{C}\left(x_{C}\right)}{p\left(x_{E}^{*}\right)}
$$

2. Marginals $p\left(x_{E}^{*}\right)$ and $p\left(x_{C} \mid x_{E}^{*}\right)$ are then calculated by a local message passing algorithm.

Separators

Between any two cliques C and D which are neighbours in the junction tree their intersection $S=C \cap D$ is called a separator. In fact, the sets S are the minimal separators appearing in any decomposition sequence.
We also assign potentials to separators, initially $\phi_{S} \equiv 1$ for all $S \in \mathcal{S}$, where \mathcal{S} is the set of separators.
Finally let

$$
\begin{equation*}
\kappa(x)=\frac{\prod_{C \in \mathcal{C}} \phi_{C}\left(x_{C}\right)}{\prod_{S \in \mathcal{S}} \phi_{S}\left(x_{S}\right)}, \tag{1}
\end{equation*}
$$

and now it holds that $p\left(x \mid x_{E}^{*}\right)=\kappa(x) / p\left(x_{E}^{*}\right)$.
The expression (1) will be invariant under the message passing.

Marginalization

The A-marginal of a potential ϕ_{B} for $A \subseteq B$ is

$$
\phi_{B}^{\downarrow A}(x)=\sum_{y_{B}: y_{A}=x_{A}} \phi_{B}(y)
$$

If ϕ_{B} depends on x through x_{B} only and $B \subseteq V$ is 'small', marginal can be computed easily.
Marginalization satisfies
Consonance For subsets A and $B: \phi^{\downarrow(A \cap B)}=\left(\phi^{\downarrow B}\right)^{\downarrow A}$
Distributivity If ϕ_{C} depends on x_{C} only and $C \subseteq B$:

$$
\left(\phi \phi_{C}\right)^{\downarrow B}=\left(\phi^{\downarrow B}\right) \phi_{C} .
$$

Messages

When C sends message to D, the following happens:

Before

After
Computation is local, involving only variables within cliques.

The expression

$$
\kappa(x)=\frac{\prod_{C \in \mathcal{C}} \phi_{C}\left(x_{C}\right)}{\prod_{S \in \mathcal{S}} \phi_{S}\left(x_{S}\right)}
$$

is invariant under the message passing since $\phi_{C} \phi_{D} / \phi_{S}$ is:

$$
\frac{\phi_{C} \phi_{D} \frac{\phi_{C}^{\downarrow S}}{\phi_{S}}}{\phi_{C}^{\downarrow S}}=\frac{\phi_{C} \phi_{D}}{\phi_{S}}
$$

After the message has been sent, D contains the D-marginal of $\phi_{C} \phi_{D} / \phi_{S}$.
To see this, calculate

$$
\left(\frac{\phi_{C} \phi_{D}}{\phi_{S}}\right)^{\downarrow D}=\frac{\phi_{D}}{\phi_{S}} \phi_{C}^{\downarrow D}=\frac{\phi_{D}}{\phi_{S}} \phi_{C}^{\downarrow S} .
$$

Second message

If D returns message to C, the following happens:

Now all sets contain the relevant marginal of $\phi=\phi_{C} \phi_{D} / \phi_{S}$: The separator contains

$$
\phi^{\downarrow S}=\left(\frac{\phi_{C} \phi_{D}}{\phi_{S}}\right)^{\downarrow S}=\left(\phi^{\downarrow D}\right)^{\downarrow S}=\left(\phi_{D} \frac{\phi_{C}^{\downarrow S}}{\phi_{S}}\right)^{\downarrow S}=\frac{\phi_{C}^{\downarrow S} \phi_{D}^{\downarrow S}}{\phi_{S}}
$$

C contains

$$
\phi_{C} \frac{\phi^{\downarrow S}}{\phi_{C}^{\downarrow S}}=\frac{\phi_{C}}{\phi_{S}} \phi_{D}^{\downarrow S}=\phi^{\downarrow C}
$$

since, as before

$$
\left(\frac{\phi_{C} \phi_{D}}{\phi_{S}}\right)^{\downarrow C}=\frac{\phi_{D}}{\phi_{S}} \phi_{C}^{\downarrow D}=\frac{\phi_{C}}{\phi_{S}} \phi_{D}^{\downarrow S}
$$

Further messages between C and D are neutral! Nothing will change if a message is repeated.

Two phases:

- CollInfo: messages are sent from leaves towards arbitrarily chosen root R.
After CollInfo, the root potential satisfies $\phi_{R}\left(x_{R}\right)=\kappa^{\downarrow R}\left(x_{R}\right)=p\left(x_{R}, x_{E}^{*}\right)$.

Two phases:

- CollInfo: messages are sent from leaves towards arbitrarily chosen root R.
After CollInfo, the root potential satisfies $\phi_{R}\left(x_{R}\right)=\kappa^{\downarrow R}\left(x_{R}\right)=p\left(x_{R}, x_{E}^{*}\right)$.
- DistInfo: messages are sent from root R towards leaves. After Collinfo and subsequent DistInfo, it holds for all $B \in \mathcal{C} \cup \mathcal{S}$ that $\phi_{B}\left(x_{B}\right)==\kappa^{\downarrow B}\left(x_{B}\right)=p\left(x_{B}, x_{E}^{*}\right)$.

Two phases:

- CollInfo: messages are sent from leaves towards arbitrarily chosen root R.
After Collinfo, the root potential satisfies $\phi_{R}\left(x_{R}\right)=\kappa^{\downarrow R}\left(x_{R}\right)=p\left(x_{R}, x_{E}^{*}\right)$.
- DistInfo: messages are sent from root R towards leaves. After Collinfo and subsequent DistInfo, it holds for all $B \in \mathcal{C} \cup \mathcal{S}$ that $\phi_{B}\left(x_{B}\right)==\kappa^{\downarrow B}\left(x_{B}\right)=p\left(x_{B}, x_{E}^{*}\right)$.
- Hence $p\left(x_{E}^{*}\right)=\sum_{x_{S}} \phi_{S}\left(x_{S}\right)$ for any $S \in \mathcal{S}$ and $p\left(x_{v} \mid x_{E}^{*}\right)$ can readily be computed from any ϕ_{S} with $v \in S$.

CollInfo

Messages are sent from leaves towards root.

DistInfo

The correctness of the algorithm is easily established by induction:
We have on the previous overheads shown correctness for a junction tree with only two cliques.
Now consider a leaf clique L of the juction tree and let $V *=\cup_{C: C \in \mathcal{C} \backslash\{L\}} C$.
We can then think of L and V^{*} forming a junction tree of two cliques with separator $S^{*}=L \cap C^{*}$ where C^{*} is the neighbour of L in the junction tree.
After a message has been sent from L to V^{*} in the CollInfo phase, $\phi_{V^{*}}$ is equal to the V^{*}-marginal of κ.

By induction, when all messages have been sent except the one from the neighbour clique C^{*} to L, all cliques other than L contain the relevant marginal of κ, and

$$
\phi_{V^{*}}=\frac{\prod_{C: C \in \mathcal{C} \backslash\{L\}} \phi_{C}}{\prod_{S: S \in \mathcal{S} \backslash\left\{S^{*}\right\}} \phi_{S}} .
$$

Now let, V^{*} send its message back to L. To do this, it needs to calculate $\phi_{V^{*}}^{\downarrow S^{*}}$. But since $S^{*} \subseteq C^{*}$, and $\phi_{C^{*}}=\phi_{V^{*}}^{\downarrow C^{*}}$ we have

$$
\phi_{V^{*}}^{\downarrow S^{*}}=\phi_{C^{*}}^{\downarrow S^{*}}
$$

and sending a message from V^{*} to L is thus equivalent to sending a message from C^{*} to L. Thus, after this message has been sent, $\phi_{L}=\kappa^{\downarrow L}$ as desired.

Alternative scheduling of messages

Local control:
Allow clique to send message if and only if it has already received message from all other neighbours. Such messages are live.
Using this protocol, there will be one clique who first receives messages from all its neighbours. This is effectively the root R in CollInfo and DistInfo.

Additional messages never do any harm (ignoring efficiency issues) as κ is invariant under message passing.
Exactly two live messages along every branch is needed.

Replace sum-marginal with A-maxmarginal:

$$
\phi_{B}^{\downarrow A}(x)=\max _{y_{B}: y_{A}=x_{A}} \phi_{B}(y)
$$

Satisfies consonance: $\phi^{\downarrow(A \cap B)}=\left(\phi^{\downarrow B}\right)^{\downarrow A}$ and distributivity: $\left(\phi_{C}\right)^{\downarrow B}=\left(\phi^{\downarrow B}\right) \phi_{C}$, if ϕ_{C} depends on x_{C} only and $C \subseteq B$.
CollInfo yields maximal value of density f.
DistInfo yields configuration with maximum probability.
Viterbi decoding for HMMs is special case.
Since (1) remains invariant, one can switch freely between maxand sum-propagation.

After CollInfo, the root potential is $\phi_{R}(x) \propto p\left(x_{R} \mid x_{E}\right)$ Modify DistInfo as follows:

1. Pick random configuration \check{x}_{R} from ϕ_{R}.
2. Send message to neighbours C as $\check{x}_{R \cap C}=\check{x}_{S}$ where $S=C \cap R$ is the separator.
3. Continue by picking \check{x}_{C} according to $\phi_{C}\left(x_{C} \backslash S, \check{x}_{S}\right)$ and send message further away from root.
When the sampling stops at leaves of junction tree, a configuration \check{x} has been generated from $p\left(x \mid x_{E}^{*}\right)$.

The scaling operation on p :

$$
\left(T_{a} p\right)(x) \leftarrow p(x) \frac{n^{\downarrow a}\left(x_{a}\right)}{n p^{\downarrow a}\left(x_{a}\right)}, \quad x \in \mathcal{X}
$$

is potentially very complex, as it cycles through all $x \in \mathcal{X}$, which is huge if V is large. If we exploit a factorization of p w.r.t. a junction tree \mathcal{T} for a decomposable $\mathcal{C} \supseteq \mathcal{A}$

$$
p(x)=\frac{\prod_{C \in \mathcal{C}} \phi_{C}\left(x_{C}\right)}{\prod_{S \in \mathcal{S}} \phi_{S}\left(x_{S}\right)},
$$

we can avoid scaling p and only scale the corresponding factor $\phi_{C^{*}}$ with $a \subseteq C^{*}$:

$$
\left(T_{a} \phi_{C^{*}}\right)\left(x_{C^{*}}\right) \leftarrow \phi_{C^{*}}\left(x_{C^{*}}\right) \frac{n^{\downarrow a}\left(x_{a}\right)}{n p^{\downarrow a}\left(x_{a}\right)}, \quad x_{C^{*}} \in \mathcal{X}_{C^{*}}
$$

where $p^{\downarrow a}$ is calculated by probability propagation,

The scaling can now be made by changing the ϕ 's:

$$
\phi_{B} \leftarrow \phi_{B} \text { for } B \neq C^{*}, \quad \phi_{C^{*}} \leftarrow T_{a} \phi_{C^{*}} .
$$

This can reduce the complexity considerably.
Note that if $a=C$ and $\phi_{a}=n^{\downarrow a}\left(x_{a}\right)$, then $T_{a} \phi_{a}=\phi_{a}$. Hence the explicit formula for the MLE.

