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Characterizing chordal graphs

The following are equivalent for any undirected graph G.

(i) G is chordal;

(ii) G is decomposable;

(iii) All prime components of G are cliques;

(iv) G admits a perfect numbering;

(v) Every minimal (α, β)-separator are complete;

(vi) Cliques of G can be arranged in a junction tree.
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Algorithms associated with chordality

Maximum Cardinality Search (MCS) identifies whether a graph is
chordal or not.

If a graph G is chordal, MCS yields a perfect numbering of the
vertices. In addition it finds the cliques of G:

From an MCS numbering V = {1, . . . , |V |}, let

Bλ = bd(λ) ∩ {1, . . . , λ− 1}

and πλ = |Bλ|. A ladder vertex is either λ = |V | or one with
πλ+1 < πλ + 1. Let Λ be the set of ladder vertices.

The cliques are Cλ = {λ} ∪ Bλ, λ ∈ Λ.
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Junction tree

Let A be a collection of finite subsets of a set V . A junction tree
T of sets in A is an undirected tree with A as a vertex set,
satisfying the junction tree property:

If A,B ∈ A and C is on the unique path in T between A
and B it holds that A ∩ B ⊂ C .

If the sets in A are pairwise incomparable, they can be arranged in
a junction tree if and only if A = C where C are the cliques of a
chordal graph.

The junction tree can be constructed directly from the MCS
ordering Cλ, λ ∈ Λ.
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The general problem

Factorizing density on X = ×v∈VXv with V and Xv finite:

p(x) =
∏
C∈C

φC (x).

The potentials φC (x) depend on xC = (xv , v ∈ C ) only.
Basic task to calculate marginal (likelihood)

p↓E (x∗E ) =
∑
yV\E

p(x∗E , yV \E )

for E ⊆ V and fixed x∗E , but sum has too many terms.
A second purpose is to get the prediction
p(xv | x∗E ) = p(xv , x

∗
E )/p(x∗E ) for v ∈ V .
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Computational structure

Algorithms all arrange the collection of sets C in a junction tree T .
Hence, they works only if C are cliques of chordal graph G.

If the initial model is based on a DAG D, the first step is to form
the moral graph G = Dm, exploiting that if P factorizes w.r.t. D, it
also factorizes w.r.t. Dm.

If G is not chordal from the outset, triangulation is used to
construct chordal graph G′ with E ⊆ E ′. Again, if P factorizes
w.r.t. G it factorizes w.r.t. G′.This step is non-trivial and it is
NP-complete to optimize.

When this has been done, the computations are executed by
message passing.
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The computational structure is set up in several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.

Steffen Lauritzen, University of Oxford Probability Propagation



Chordal graphs and junction trees
Probability propagation

Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

The computational structure is set up in several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.

Steffen Lauritzen, University of Oxford Probability Propagation



Chordal graphs and junction trees
Probability propagation

Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

The computational structure is set up in several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.

Steffen Lauritzen, University of Oxford Probability Propagation



Chordal graphs and junction trees
Probability propagation

Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

The computational structure is set up in several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.

Steffen Lauritzen, University of Oxford Probability Propagation



Chordal graphs and junction trees
Probability propagation

Alternative computations

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

The computational structure is set up in several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.

The complete process above is known as compilation.
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Initialization

1. For every vertex v ∈ V we find a clique C (v) in the
triangulated graph G̃ which contains pa(v). Such a clique
exists because v ∪ pa(v) are complete in Dm by construction,
and hence in G̃;

2. Define potential functions φC for all cliques C in G̃ as

φC (x) =
∏

v :C(v)=C

p(xv | xpa(v))

where the product over an empty index set is set to 1, i.e.
φC ≡ 1 if no vertex is assigned to C .

3. It now holds that

p(x) =
∏
C∈C

φC (x).
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Overview

This involves following steps

1. Incorporating observations: If XE = x∗E is observed, we modify
potentials as

φC (xC )← φC (x)
∏

e∈E∩C

δ(x∗e , xe),

with δ(u, v) = 1 if u = v and else δ(u, v) = 0. Then:

p(x |XE = x∗E ) =

∏
C∈C φC (xC )

p(x∗E )
.

2. Marginals p(x∗E ) and p(xC | x∗E ) are then calculated by a local
message passing algorithm.
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Separators

Between any two cliques C and D which are neighbours in the
junction tree their intersection S = C ∩ D is called a separator. In
fact, the sets S are the minimal separators appearing in any
decomposition sequence.

We also assign potentials to separators, initially φS ≡ 1 for all
S ∈ S, where S is the set of separators.

Finally let

κ(x) =

∏
C∈C φC (xC )∏
S∈S φS(xS)

, (1)

and now it holds that p(x | x∗E ) = κ(x)/p(x∗E ).

The expression (1) will be invariant under the message passing.
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Marginalization

The A-marginal of a potential φB for A ⊆ B is

φ↓AB (x) =
∑

yB :yA=xA

φB(y)

If φB depends on x through xB only and B ⊆ V is ‘small’,
marginal can be computed easily.
Marginalization satisfies

Consonance For subsets A and B: φ↓(A∩B) =
(
φ↓B

)↓A
Distributivity If φC depends on xC only and C ⊆ B:

(φφC )↓B =
(
φ↓B

)
φC .
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Messages

When C sends message to D, the following happens:

Before

�
�

�
�

�
�

�
�φC φS φD

-�
�

�
�

�
�

�
�φC φ↓SC φD

φ↓SC
φS After

Computation is local, involving only variables within cliques.
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The expression

κ(x) =

∏
C∈C φC (xC )∏
S∈S φS(xS)

is invariant under the message passing since φCφD/φS is:

φC φD
φ↓SC
φS

φ↓SC

=
φCφD

φS
.

After the message has been sent, D contains the D-marginal of
φCφD/φS .
To see this, calculate(

φCφD

φS

)↓D
=
φD

φS
φ↓DC =

φD

φS
φ↓SC .
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Second message

If D returns message to C , the following happens:

First message

�
�

�
�

�
�

�
�φC

φ↓SD
φS

φ↓S φD
φ↓SC
φS

-

�

�
�

�
�

�
�

�
�φC φ↓SC φD

φ↓SC
φS

Second message
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Now all sets contain the relevant marginal of φ = φCφD/φS :
The separator contains

φ↓S =

(
φCφD

φS

)↓S
= (φ↓D)↓S =

(
φD

φ↓SC

φS

)↓S
=
φ↓SC φ↓SD

φS
.

C contains

φC
φ↓S

φ↓SC

=
φC

φS
φ↓SD = φ↓C

since, as before (
φCφD

φS

)↓C
=
φD

φS
φ↓DC =

φC

φS
φ↓SD .

Further messages between C and D are neutral! Nothing will
change if a message is repeated.
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Two phases:

I CollInfo: messages are sent from leaves towards arbitrarily
chosen root R.
After CollInfo, the root potential satisfies
φR(xR) = κ↓R(xR) = p(xR , x

∗
E ).

I DistInfo: messages are sent from root R towards leaves.
After CollInfo and subsequent DistInfo, it holds for all
B ∈ C ∪ S that φB(xB) == κ↓B(xB) = p(xB , x

∗
E ).

I Hence p(x∗E ) =
∑

xS
φS(xS) for any S ∈ S and p(xv | x∗E ) can

readily be computed from any φS with v ∈ S .

Steffen Lauritzen, University of Oxford Probability Propagation
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Messages are sent from leaves towards root.
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After CollInfo, messages are sent from root towards leaves.
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The correctness of the algorithm is easily established by induction:

We have on the previous overheads shown correctness for a
junction tree with only two cliques.

Now consider a leaf clique L of the juction tree and let
V ∗ = ∪C :C∈C\{L}C .

We can then think of L and V ∗ forming a junction tree of two
cliques with separator S∗ = L ∩ C ∗ where C ∗ is the neighbour of L
in the junction tree.

After a message has been sent from L to V ∗ in the CollInfo
phase, φV ∗ is equal to the V ∗-marginal of κ.
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By induction, when all messages have been sent except the one
from the neighbour clique C ∗ to L, all cliques other than L contain
the relevant marginal of κ, and

φV ∗ =

∏
C :C∈C\{L} φC∏
S:S∈S\{S∗} φS

.

Now let, V ∗ send its message back to L. To do this, it needs to
calculate φ↓S

∗

V ∗ . But since S∗ ⊆ C ∗, and φC∗ = φ↓C
∗

V ∗ we have

φ↓S
∗

V ∗ = φ↓S
∗

C∗

and sending a message from V ∗ to L is thus equivalent to sending
a message from C ∗ to L. Thus, after this message has been sent,
φL = κ↓L as desired.
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Alternative scheduling of messages

Local control:
Allow clique to send message if and only if it has already received
message from all other neighbours. Such messages are live.

Using this protocol, there will be one clique who first receives
messages from all its neighbours. This is effectively the root R in
CollInfo and DistInfo.

Additional messages never do any harm (ignoring efficiency issues)
as κ is invariant under message passing.
Exactly two live messages along every branch is needed.

Steffen Lauritzen, University of Oxford Probability Propagation
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Replace sum-marginal with A–maxmarginal:

φ↓AB (x) = max
yB :yA=xA

φB(y)

Satisfies consonance: φ↓(A∩B) =
(
φ↓B

)↓A
and distributivity:

(φφC )↓B =
(
φ↓B

)
φC , if φC depends on xC only and C ⊆ B.

CollInfo yields maximal value of density f .

DistInfo yields configuration with maximum probability.

Viterbi decoding for HMMs is special case.
Since (1) remains invariant, one can switch freely between max-
and sum-propagation.

Steffen Lauritzen, University of Oxford Probability Propagation
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After CollInfo, the root potential is φR(x) ∝ p(xR | xE )
Modify DistInfo as follows:

1. Pick random configuration x̌R from φR .

2. Send message to neighbours C as x̌R∩C = x̌S where
S = C ∩ R is the separator.

3. Continue by picking x̌C according to φC (xC\S , x̌S) and send
message further away from root.

When the sampling stops at leaves of junction tree, a configuration
x̌ has been generated from p(x | x∗E ).

Steffen Lauritzen, University of Oxford Probability Propagation
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The scaling operation on p:

(Tap)(x)← p(x)
n↓a(xa)

np↓a(xa)
, x ∈ X

is potentially very complex, as it cycles through all x ∈ X , which is
huge if V is large. If we exploit a factorization of p w.r.t. a
junction tree T for a decomposable C ⊇ A

p(x) =

∏
C∈C φC (xC )∏
S∈S φS(xS)

,

we can avoid scaling p and only scale the corresponding factor φC∗

with a ⊆ C ∗:

(TaφC∗)(xC∗)← φC∗(xC∗)
n↓a(xa)

np↓a(xa)
, xC∗ ∈ XC∗

where p↓a is calculated by probability propagation.
Steffen Lauritzen, University of Oxford Probability Propagation
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The scaling can now be made by changing the φ’s:

φB ← φB for B 6= C ∗, φC∗ ← TaφC∗ .

This can reduce the complexity considerably.

Note that if a = C and φa = n↓a(xa), then Taφa = φa. Hence the
explicit formula for the MLE.

Steffen Lauritzen, University of Oxford Probability Propagation
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