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A semi-graphoid relation ⊥σ satisfies

(P) the pairwise Markov property if

α 6∼ β =⇒ α⊥σ β |V \ {α, β};

(L) the local Markov property if

∀α ∈ V : α⊥σ V \ cl(α) | bd(α);

(G) the global Markov property if

A⊥G B | S =⇒ A⊥σ B | S .

It holds for any semigraphoid that (G) =⇒ (L) =⇒ (P) and for
a graphoid also (P) =⇒ (G)
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Assume density f w.r.t. product measure on X . For a ⊆ V , ψa(x)
denotes a function which depends on xa only, i.e.

xa = ya =⇒ ψa(x) = ψa(y).

We can then write ψa(x) = ψa(xa) without ambiguity.

The distribution of X factorizes w.r.t. G or satisfies (F) if

f (x) =
∏
a∈A

ψa(x)

where A are complete subsets of G.

Complete subsets of a graph are sets with all elements pairwise
neighbours.
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Let (F) denote the property that f factorizes w.r.t. G and let (G),
(L) and (P) denote Markov properties w.r.t. ⊥⊥ . It then holds that

(F) =⇒ (G)

and further: If f (x) > 0 for all x , (P) =⇒ (F).

Thus in the case of positive density all Markov properties coincide:

(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (P).
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Any joint probability distribution P of X = (Xv , v ∈ V ) has a
dependence graph G = G (P) = (V ,E (P)).

This is defined by letting α 6∼ β in G (P) exactly when

α⊥⊥P β |V \ {α, β}.

X will then satisfy the pairwise Markov w.r.t. G (P) and G (P) is
smallest with this property, i.e. P is pairwise Markov w.r.t. any
graph G iff

G (P) ⊆ G.

If f (x) > 0 for all x , or P factorizes w.r.t. G (P), P is also globally
Markov w.r.t. G (P).
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Let A denote an arbitrary set of subsets of V . A density f (or
function) factorizes w.r.t. A if there exist functions ψa(x) which
depend on xa only and

f (x) =
∏
a∈A

ψa(x).

Similar to factorization w.r.t. graph, but A are not necessarily
complete subsets of a graph.

The set of distributions PA which factorize w.r.t. A is the
hierarchical log–linear model generated by A.

To avoid redundancy, it is common to assume the sets in A to be
incomparable in the sense that no subset in A is contained in any
other member of A. A is the generating class of the log–linear
model.
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Log-linear models are traditionally used for contingency tables,
where e.g. mijk denotes the mean of the counts Nijk in the cell
(i , j , k) which has then been expanded as e.g.

log mijk = αi + βj + γk (1)

or
log mijk = αij + βjk (2)

or
log mijk = αij + βjk + γik , (3)

or (with redundancy)

log mijk = γ + δi + φj + ηk + αij + βjk + γik , (4)
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This largely a matter of different notation. Assume data
X 1 = x1, . . . ,X n = xn and V = {I , J,K} and write i = 1, . . . , |I |
for the possible values of XI etc. and

Nijk = |{ν : xν = (i , j , k)}|,

etc. Then mijk = nf (x) and if f (x) > 0 and factorizes w.r.t.
A = {{I , J}, {J,K}} we have

log f (x) = logψIJ(xI , xJ) + logψJK (xJ , xK ).
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Thus if we let

αij = log n + logψIJ(xI , xJ), βjk = logψJK (xJ , xK )

we have
log mijk = αij + βjk .

The only difference is the assumption of positivity which is not
necessary when using the multiplicative definition.

The logarithm of the factors φa = logψa are known as interaction
terms of order |a| − 1 or |a|-factor interactions.

Interaction terms of 0th order are called main effects.
We also refer to the factors themselves (rather than their
logarithms) using the same terms.
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Recall that a joint probability distribution P of X = (Xv , v ∈ V )
has a dependence graph G = G (P) = (V ,E (P)), defined by
letting α 6∼ β in G (P) exactly when

α⊥⊥P β |V \ {α, β}.

The dependence graph G (P) for a family P is the smallest graph
G so that all P ∈ P are pairwise Markov w.r.t. G:

α⊥⊥P β |V \ {α, β} for all P ∈ P.
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For any generating class A we construct the dependence graph
G (A) = G (PA) of the log–linear model PA.

Since the pairwise Markov property has to hold for all members of
PA, it has at least to hold for all positive members. The
dependence graph is determined by the relation

α ∼ β ⇐⇒ ∃a ∈ A : α, β ∈ a.

For sets in A are clearly complete in G (A) and therefore
distributions in PA do factorize according to G (A). On the other
hand, any graph with fewer edges would not suffice.

They are thus also global, local, and pairwise Markov w.r.t. G (A).
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Independence

The log–linear model specified by (1) is known as the main effects
model.
It has generating class consisting of singletons only
A = {{I}, {J}, {K}}. It has dependence graph

J

I K

t
t t

Thus it corresponds to complete independence.
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Conditional independence

The log–linear model specified by (2) has no interaction between I
and K .
It has generating class A = {{I , J}, {J,K}} and dependence graph
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Thus it corresponds to the conditional independence I ⊥⊥K | J.
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No interaction of second order

The log–linear model specified by (3) has no second-order
interaction. It has generating class A = {{I , J}, {J,K}, {I ,K}}
and its dependence graph
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is the complete graph. Thus it has no conditional independence
interpretation.
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As a generating class defines a dependence graph G (A), the
reverse is also true.
The set C(G) of cliques (maximal complete subsets) of G is a
generating class for the log–linear model of distributions which
factorize w.r.t. G.
If the dependence graph completely summarizes the restrictions
imposed by A, i.e. if

A = C(G (A)),

A is conformal.
The generating classes for the models given by (1) and (2) are
conformal, whereas this is not the case for (3).
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The factor graph of A is the bipartite graph with vertices V ∪ A
and edges define by

α ∼ a ⇐⇒ α ∈ a.

Using this graph even non-conformal log–linear models admit a
simple visual representation.
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If F = F (A) is the factor graph for A and G = G (A) the
corresponding dependence graph, it is not difficult to see that for
A, B, S being subsets of V

A⊥G B |S ⇐⇒ A⊥F B | S

and hence conditional independence properties can be read directly
off the factor graph also.
In that sense, the factor graph is more informative than the
dependence graph.
Note that David Edwards’ program MIM, www.hypergraph.dk,
uses the term interaction graph for the factor graph.
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