Graph decomposition Identifying chordal graphs Junction trees Local computation

Junction Trees and Chordal Graphs

Steffen Lauritzen, University of Oxford

Graphical Models, Lecture 6, Michaelmas Term 2009

October 30, 2009

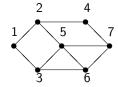
Consider an *undirected* graph $\mathcal{G} = (V, E)$. A partitioning of V into a triple (A, B, S) of subsets of V forms a *decomposition* of \mathcal{G} if

 $A \perp_{\mathcal{G}} B \mid S$ and S is complete.

The decomposition is *proper* if $A \neq \emptyset$ and $B \neq \emptyset$.

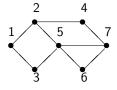
The *components* of \mathcal{G} are the induced subgraphs $\mathcal{G}_{A\cup S}$ and $\mathcal{G}_{B\cup S}$.

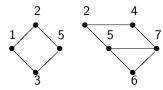
A graph is *prime* if no proper decomposition exists.



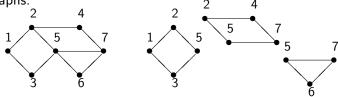
The graph to the left is prime

Decomposition with $A = \{1, 3\}$, $B = \{4, 6, 7\}$ and $S = \{2, 5\}$





Any graph can be recursively decomposed into its maximal prime subgraphs:



A graph is *decomposable* (or rather fully decomposable) if it is complete or admits a proper decomposition into *decomposable* subgraphs.

Definition is recursive. Alternatively this means that *all maximal prime subgraphs are cliques*.

Recursive decomposition of a decomposable graph into cliques yields the formula:

$$f(x)\prod_{S\in\mathcal{S}}f_S(x_S)^{\nu(S)}=\prod_{C\in\mathcal{C}}f_C(x_C).$$

Here $\mathcal S$ is the set of *minimal complete separators* occurring in the decomposition process and $\nu(S)$ the number of times such a separator appears in this process.

As we have a particularly simple factorization of the density, we have a similar factorization of the maximum likelihood estimate for a decomposable log-linear model.

The MLE for p under the log-linear model with generating class $\mathcal{A}=\mathcal{C}(\mathcal{G})$ for a chordal graph \mathcal{G} is

$$\hat{p}(x) = \frac{\prod_{C \in \mathcal{C}} n(x_C)}{n \prod_{S \in \mathcal{S}} n(x_S)^{\nu(S)}}$$

where $\nu(S)$ is the number of times S appears as a separator in the total decomposition of its dependence graph.

The following are equivalent for any undirected graph \mathcal{G} .

- (i) *G* is chordal;
- (ii) G is decomposable;
- (iii) All maximal prime subgraphs of G are cliques;
- (iv) G admits a perfect numbering;
- (v) Every minimal (α, β) -separator are complete.

Trees are chordal graphs and thus decomposable.

This simple algorithm has complexity O(|V| + |E|):

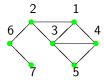
- 1. Choose $v_0 \in V$ arbitrary and let $v_0 = 1$;
- 2. When vertices $\{1,2,\ldots,j\}$ have been identified, choose v=j+1 among $V\setminus\{1,2,\ldots,j\}$ with highest cardinality of its numbered neighbours;
- 3. If $bd(j+1) \cap \{1,2,\ldots,j\}$ is not complete, \mathcal{G} is not chordal;
- 4. Repeat from 2;
- 5. If the algorithm continues until only one vertex is left, the graph is chordal and the numbering is perfect.

Finding the cliques of a chordal graph

From an MCS numbering $V = \{1, \dots, |V|\}$, let

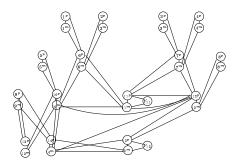
$$B_{\lambda} = \mathsf{bd}(\lambda) \cap \{1, \dots, \lambda - 1\}$$

and $\pi_{\lambda} = |B_{\lambda}|$. Call λ a *ladder vertex* if $\lambda = |V|$ or if $\pi_{\lambda+1} < \pi_{\lambda} + 1$. Let Λ be the set of ladder vertices.



 π_{λ} : 0,1,2,2,2,1,1. The cliques are $C_{\lambda} = {\lambda} \cup B_{\lambda}, \lambda \in \Lambda$.

A chordal graph



This graph is chordal, but it might not be that easy to see. . . Maximum Cardinality Search is handy!

Definition
Characterizing chordal graphs
Construction of junction tree
Junction trees of prime components
Decompositon formula for MLE

Let \mathcal{A} be a collection of finite subsets of a set V. A *junction tree* \mathcal{T} of sets in \mathcal{A} is an undirected tree with \mathcal{A} as a vertex set, satisfying the *junction tree property*:

If $A, B \in \mathcal{A}$ and C is on the unique path in \mathcal{T} between A and B it holds that $A \cap B \subset C$.

If the sets in an arbitrary $\mathcal A$ are pairwise incomparable, they can be arranged in a junction tree if and only if $\mathcal A=\mathcal C$ where $\mathcal C$ are the cliques of a chordal graph

The following are equivalent for any undirected graph \mathcal{G} .

- (i) *G* is chordal;
- (ii) G is decomposable;
- (iii) All prime components of G are cliques;
- (iv) G admits a perfect numbering;
- (v) Every minimal (α, β) -separator are complete.
- (vi) The cliques of G can be arranged in a junction tree.

The junction tree can be constructed directly from the MCS ordering C_{λ} , $\lambda \in \Lambda$, where C_{λ} are the cliques: Since the MCS-numbering is perfect, C_{λ} , $\lambda > \lambda_{\min}$ all satisfy

$$C_{\lambda} \cap (\cup_{\lambda' < \lambda} C_{\lambda'}) = C_{\lambda} \cap C_{\lambda^*} = S_{\lambda}$$

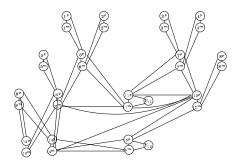
for some $\lambda^* < \lambda$.

A junction tree is now easily constructed by attaching C_{λ} to any C_{λ^*} satisfying the above. Although λ^* may not be uniquely determined, S_{λ} is.

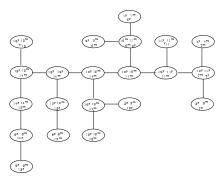
Indeed, the sets S_{λ} are the minimal complete separators and the numbers $\nu(S)$ are $\nu(S) = |\{\lambda \in \Lambda : S_{\lambda} = S\}|$.

Definition
Characterizing chordal graphs
Construction of junction tree
Junction trees of prime components
Decompositon formula for MLE

A chordal graph



Junction tree



Cliques of graph arranged into a tree with $C_1 \cap C_2 \subseteq D$ for all cliques D on path between C_1 and C_2 .

Definition
Characterizing chordal graphs
Construction of junction tree
Junction trees of prime components
Decompositon formula for MLE

In general, the *prime components* of any undirected graph can be arranged in a junction tree in a similar way.

Then every pair of neighbours (C, D) in the junction tree represents a decomposition of $\mathcal G$ into $\mathcal G_{\tilde C}$ and $\mathcal G_{\tilde D}$, where $\tilde C$ is the set of vertices in cliques connected to C but separated from D in the junction tree, and similarly with $\tilde D$.

The corresponding algorithm is based on a slightly more sophisticated algorithm known as *Lexicographic Search* (LEX) which runs in $O(|V|^2)$ time.

The MLE for p under a conformal log-linear model with generating class $\mathcal{A} = \mathcal{C}(\mathcal{G})$ for a chordal graph \mathcal{G} is

$$\hat{p}(x) = \frac{\prod_{Q \in \mathcal{Q}} \hat{p}_Q(x_Q)}{\prod_{S \in \mathcal{S}} \{n(x_S)/n\}^{\nu(S)}}$$

where $\hat{p}_Q(x_Q)$ is the estimate of the marginal distribution based on data from Q only and $\nu(S)$ is the number of times S appears as a separator in the decomposition of its dependence graph into prime components.

When the prime components are cliques it further holds that $\hat{p}_C(x_C) = n(x_C)/n$.

Local computation algorithms have been developed with a variety of purposes. For example:

- Kalman filter and smoother
- Solving sparse linear equations;
- Decoding digital signals;
- Estimation in hidden Markov models;
- Peeling in pedigrees;
- Belief function evaluation;
- Probability propagation.

Also dynamic programming, linear programming, optimizing decisions, calculating Nash equilibria in cooperative games, and many others. List is far from exhaustive!

All algorithms are using, explicitly or implicitly, a *graph decomposition* and *a junction tree* or similar to make the computations.