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Let A denote an arbitrary set of subsets of V . A density f (or
function) factorizes w.r.t. A if there exist functions ψa(x) which
depend on xa only and

f (x) =
∏
a∈A

ψa(x).

Similar to factorization w.r.t. graph, but A are not necessarily
complete subsets of a graph.

The set of distributions PA which factorize w.r.t. A is the
hierarchical log–linear model generated by A.

To avoid redundancy, it is common to assume the sets in A to be
incomparable in the sense that no subset in A is contained in any
other member of A. A is the generating class of the log–linear
model.

Steffen Lauritzen, University of Oxford Maximum likelihood in log-linear models



Log–linear models
Maximum likelihood

Generating class
Dependence graph of log-linear model
Conformal graphical models
Factor graphs

For any generating class A we construct the dependence graph
G (A) = G (PA) of the log–linear model PA.

Since the pairwise Markov property has to hold for all members of
PA, it has at least to hold for all positive members. The
dependence graph is determined by the relation

α ∼ β ⇐⇒ ∃a ∈ A : α, β ∈ a.

For sets in A are clearly complete in G (A) and therefore
distributions in PA do factorize according to G (A). On the other
hand, any graph with fewer edges would not suffice.

They are thus also global, local, and pairwise Markov w.r.t. G (A).
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As a generating class defines a dependence graph G (A), the
reverse is also true.
The set C(G) of cliques (maximal complete subsets) of G is a
generating class for the log–linear model of distributions which
factorize w.r.t. G.
If the dependence graph completely summarizes the restrictions
imposed by A, i.e. if

A = C(G (A)),

A is conformal.
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The factor graph of A is the bipartite graph with vertices V ∪ A
and edges define by

α ∼ a ⇐⇒ α ∈ a.

Using this graph even non-conformal log–linear models admit a
simple visual representation.
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Data in list form

Consider a sample X 1 = x1, . . . ,X n = xn from a distribution with
probability mass function p. We refer to such data as being in list
form, e.g. as

case Admitted Sex

1 Yes Male
2 Yes Female
3 No Male
4 Yes Male
...

...
...
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Contingency Table

Data often presented in the form of a contingency table or
cross-classification, obtained from the list by sorting according to
category:

Sex
Admitted Male Female

Yes 1198 557
No 1493 1278

The numerical entries are cell counts

n(x) = |{ν : xν = x}|

and the total number of observations is n =
∑

x∈X n(x).
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Assume now p ∈ PA but otherwise unknown. The likelihood
function can be expressed as

L(p) =
n∏
ν=1

p(xν) =
∏
x∈X

p(x)n(x).

In contingency table form the data follow a multinomial
distribution

P{N(x) = n(x), x ∈ X} =
n!∏

x∈X n(x)!

∏
x∈X

p(x)n(x)

but this only affects the likelihood function by a constant factor.
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The likelihood function

L(p) =
∏
x∈X

p(x)n(x),

is continuous as a function of the (|X |-dimensional vector)
unknown probability distribution p.

Since the closure PA is compact (bounded and closed), L attains
its maximum on PA.

Unfortunately, PA is not closed by itself so limits of factorizing
distributions do not necessarily factorize.

The maximum of the likelihood function may not necessarily on PA
itself, so it is necessary in general to include the boundary points.
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Indeed, it is also true that L has a unique maximum over PA,
which we shall now show.

For simplicity, we only establish uniqueness within PA. The proof
is indirect, but quite simple.

Assume p1, p2 ∈ PA with p1 6= p2 and

L(p1) = L(p2) = sup
p∈PA

L(p). (1)

Define
p12(x) = c

√
p1(x)p2(x),

where c−1 = {
∑

x

√
p1(x)p2(x)} is a normalizing constant.
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Then p12 ∈ PA because

p12(x) = c
√

p1(x)p2(x)

= c
∏
a∈A

√
ψ1

a(x)ψ2
a(x) =

∏
a∈A

ψ12
a (x),

where e.g. ψ12
a = c1/|A|

√
ψ1

a(x)ψ2
a(x).

The Cauchy–Schwarz inequality yields

c−1 =
∑
x

√
p1(x)p2(x) <

√∑
x

p1(x)

√∑
x

p2(x) = 1.
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Hence

L(p12) =
∏
x

p12(x)n(x)

=
∏
x

{
c{

√
p1(x)p2(x)

}n(x)

= cn
∏
x

√
p1(x)

n(x) ∏
x

√
p2(x)

n(x)

= cn
√

L(p1)L(p2)

>
√

L(p1)L(p2) = L(p1) = L(p2),

which contradicts (1). Hence we conclude p1 = p2.

The extension to PA is almost identical. It just needs a limit
argument to establish p1, p2 ∈ PA ⇒ p12 ∈ PA.
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The maximum likelihood estimate p̂ of p is the unique element of
PA which satisfies the system of equations

np̂(xa) = n(xa),∀a ∈ A, xa ∈ Xa. (2)

Here g(xa) =
∑

y :ya=xa
g(y) is the a-marginal of the function g .

The system of equations (2) expresses the fitting of the marginals
in A.
It can be seen as an instance of the fact that in an exponential
family (log-linear ∼ exponential), the MLE is found by equating
the sufficient statistics (marginal counts) to their expectation.
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Proof: Assume p∗ ∈ PA is a solution to the equations (2). That
p∗ maximizes the likelihood function follows from the calculation
below, where p ∈ PA is arbitrary and φa = logψa:

log L(p) =
∑
x∈X

n(x) log p(x) =
∑
x∈X

n(x)
∑
a∈A

φa(x)

=
∑
a∈A

∑
x∈X

n(x)φa(x)

=
∑
a∈A

∑
xa∈Xa

∑
y :ya=xa

n(y)φa(y)

=
∑
a∈A

∑
xa∈Xa

n(xa)φa(x).
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Further we get

log L(p) =
∑
a∈A

∑
xa∈Xa

n(xa)φa(x)

=
∑
a∈A

∑
xa∈Xa

np∗(xa)φa(x)

=
∑
a∈A

∑
x∈X

np∗(x)φa(x)

=
∑
x∈X

np∗(x) log p(x).

Thus, for any p ∈ PA we have established that

log L(p) =
∑
x∈X

np∗(x) log p(x).
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This is in particular also true for p∗. The information inequality
now yields

log L(p) =
∑
x∈X

np∗(x) log p(x)

≤
∑
x∈X

np∗(x) log p∗(x) = log L(p∗).

The case of p∗ ∈ PA needs an additional limit argument.
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To show that the equations (2) indeed have a solution, we simply
describe a convergent algorithm which solves it. This cycles
(repeatedly) through all the a-marginals in A and fit them one by
one.
For a ∈ A define the following scaling operation on p:

(Tap)(x)← p(x)
n(xa)

np(xa)
, x ∈ X

where 0/0 = 0 and b/0 is undefined if b 6= 0.
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Fitting the marginals

The operation Ta fits the a-marginal if p(xa) > 0 when n(xa) > 0:

n(Tap)(xa) = n
∑

y :ya=xa

p(y)
n(ya)

np(ya)

= n
n(xa)

np(xa)

∑
y :ya=xa

p(y)

= n
n(xa)

np(xa)
p(xa) = n(xa).
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Make an ordering of the generators A = {a1, . . . , ak}. Define S by
a full cycle of scalings

Sp = Tak
· · ·Ta2Ta1 .

Define the iteration

p0(x)← 1/|X |, pn = Spn−1, n = 1, . . . .

It then holds that
lim

n→∞
pn = p̂

where p̂ is the unique maximum likelihood estimate of p ∈ PA, i.e.
the solution of the equation system (2).
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Known as the IPS-algorithm or IPF-algorithm, or as a variety of
other names. Implemented e.g. (inefficiently) in R in loglin with
front end loglm in MASS.
Key elements in proof:

1. If p ∈ PA, so is Tap;

2. Ta is continuous at any point p of PA with p(xa) 6= 0
whenever n(xa) = 0;

3. L(Tap) ≥ L(p) so likelihood always increases;

4. p̂ is the unique fixpoint for T (and S);

5. PA is compact.
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A simple example

Admitted
Sex Yes No S-marginal

Male 1198 1493 2691
Female 557 1278 1835

A-marginal 1755 2771 4526

Admissions data from Berkeley. Consider A⊥⊥S , corresponding to
A = {{A}, {S}}.
We should fit A-marginal and S-marginal iteratively.
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Initial values

Admitted
Sex Yes No S-marginal

Male 1131.5 1131.5 2691
Female 1131.5 1131.5 1835

A-marginal 1755 2771 4526

Entries all equal to 4526/4. Gives initial values of np0.
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Fitting S-marginal

Admitted
Sex Yes No S-marginal

Male 1345.5 1345.5 2691
Female 917.5 917.5 1835

A-marginal 1755 2771 4526

For example

1345.5 = 1131.5
2691

1131.5 + 1131.5

and so on.
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Fitting A-marginal

Admitted
Sex Yes No S-marginal

Male 1043.46 1647.54 2691
Female 711.54 1123.46 1835

A-marginal 1755 2771 4526

For example

711.54 = 917.5
1755

917.5 + 1345.5

and so on.
Algorithm has converged, as both marginals now fit!
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Normalised to probabilities

Admitted
Sex Yes No S-marginal

Male 0.231 0.364 0.595
Female 0.157 0.248 0.405

A-marginal 0.388 0.612 1

Dividing everything by 4526 yields p̂.
It is overkill to use the IPS algorithm as there is an explicit
formula, as we shall see next time.
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