Maximum likelihood in log-linear models

Steffen Lauritzen, University of Oxford

Graphical Models, Lecture 4, Michaelmas Term 2009

October 22, 2009

・ロン ・回と ・ヨン ・ヨン

æ

Generating class Dependence graph of log-linear model Conformal graphical models Factor graphs

イロト イヨト イヨト イヨト

Let \mathcal{A} denote an arbitrary set of subsets of V. A density f (or function) *factorizes* w.r.t. \mathcal{A} if there exist functions $\psi_a(x)$ which depend on x_a only and

$$f(x) = \prod_{a \in \mathcal{A}} \psi_a(x).$$

Similar to factorization w.r.t. graph, but ${\cal A}$ are not necessarily complete subsets of a graph.

The set of distributions $\mathcal{P}_{\mathcal{A}}$ which factorize w.r.t. \mathcal{A} is the *hierarchical log-linear model* generated by \mathcal{A} .

To avoid redundancy, it is common to assume the sets in \mathcal{A} to be incomparable in the sense that no subset in \mathcal{A} is contained in any other member of \mathcal{A} . \mathcal{A} is the *generating class* of the log-linear model.

Generating class Dependence graph of log-linear model Conformal graphical models Factor graphs

イロト イヨト イヨト イヨト

For any generating class \mathcal{A} we construct the dependence graph $G(\mathcal{A}) = G(\mathcal{P}_{\mathcal{A}})$ of the log-linear model $\mathcal{P}_{\mathcal{A}}$.

Since the pairwise Markov property has to hold for all members of $\mathcal{P}_{\mathcal{A}}$, it has at least to hold for all positive members. The dependence graph is determined by the relation

 $\alpha \sim \beta \iff \exists \mathbf{a} \in \mathcal{A} : \alpha, \beta \in \mathbf{a}.$

For sets in \mathcal{A} are clearly complete in $G(\mathcal{A})$ and therefore *distributions in* $\mathcal{P}_{\mathcal{A}}$ *do factorize according to* $G(\mathcal{A})$. On the other hand, any graph with fewer edges would not suffice.

They are thus also global, local, and pairwise Markov w.r.t. $G(\mathcal{A})$.

Generating class Dependence graph of log-linear model Conformal graphical models Factor graphs

イロト イポト イヨト イヨト

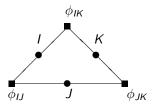
As a generating class defines a dependence graph $G(\mathcal{A})$, the reverse is also true.

The set C(G) of *cliques* (maximal complete subsets) of G is a generating class for the log-linear model of distributions which factorize w.r.t. G.

If the dependence graph completely summarizes the restrictions imposed by $\mathcal{A}, \mbox{ i.e. if }$

 $\mathcal{A} = \mathcal{C}(\mathcal{G}(\mathcal{A})),$

 \mathcal{A} is *conformal*.



The *factor graph* of A is the bipartite graph with vertices $V \cup A$ and edges define by

$$\alpha \sim a \iff \alpha \in a.$$

Using this graph even non-conformal log-linear models admit a simple visual representation.

イロト イポト イヨト イヨト

Data formats Likelihood function and its properties Uniqueness of the MLE Likelihood equations Iterative Proportional Scaling

(日) (同) (E) (E) (E)

Data in list form

Consider a sample $X^1 = x^1, ..., X^n = x^n$ from a distribution with probability mass function p. We refer to such data as being in *list form*, e.g. as

case	Admitted	Sex
1	Yes	Male
2	Yes	Female
3	No	Male
4	Yes	Male
÷	÷	÷

Data formats Likelihood function and its properties

Uniqueness of the MLE Likelihood equations Iterative Proportional Scaling

イロン イヨン イヨン イヨン

2

Contingency Table

Data often presented in the form of a *contingency table* or *cross-classification*, obtained from the list by sorting according to category:

	Sex		
Admitted	Male	Female	
Yes	1198	557	
No	1493	1278	

The numerical entries are *cell counts*

$$n(x) = |\{\nu : x^{\nu} = x\}|$$

and the total number of observations is $n = \sum_{x \in \mathcal{X}} n(x)$.

・ロト ・回ト ・ヨト ・ヨト

Assume now $p \in \mathcal{P}_{\mathcal{A}}$ but otherwise unknown. The likelihood function can be expressed as

$$L(p) = \prod_{\nu=1}^{n} p(x^{\nu}) = \prod_{x \in \mathcal{X}} p(x)^{n(x)}.$$

In contingency table form the data follow a multinomial distribution

$$P\{N(x) = n(x), x \in \mathcal{X}\} = \frac{n!}{\prod_{x \in \mathcal{X}} n(x)!} \prod_{x \in \mathcal{X}} p(x)^{n(x)}$$

but this only affects the likelihood function by a constant factor.

・ロト ・回ト ・ヨト ・ヨト

The likelihood function

$$L(p) = \prod_{x \in \mathcal{X}} p(x)^{n(x)},$$

is continuous as a function of the ($|\mathcal{X}|$ -dimensional vector) unknown probability distribution p.

Since the *closure* $\overline{\mathcal{P}_{\mathcal{A}}}$ is compact (bounded and closed), *L* attains its maximum on $\overline{\mathcal{P}_{\mathcal{A}}}$.

Unfortunately, $\mathcal{P}_{\mathcal{A}}$ is not closed by itself so limits of factorizing distributions do not necessarily factorize.

The maximum of the likelihood function may not necessarily on $\mathcal{P}_{\mathcal{A}}$ itself, so it is necessary in general to include the boundary points.

Indeed, it is also true that *L* has a unique maximum over $\overline{\mathcal{P}_{\mathcal{A}}}$, which we shall now show.

For simplicity, we only establish uniqueness within $\mathcal{P}_{\mathcal{A}}.$ The proof is indirect, but quite simple.

Assume $p_1, p_2 \in \mathcal{P}_{\mathcal{A}}$ with $p_1 \neq p_2$ and

$$L(p_1) = L(p_2) = \sup_{p \in \mathcal{P}_{\mathcal{A}}} L(p).$$
(1)

・ロット (四) (日) (日)

Define

$$p_{12}(x) = c\sqrt{p_1(x)p_2(x)},$$

where $c^{-1} = \{\sum_x \sqrt{p_1(x)p_2(x)}\}$ is a normalizing constant.

Data formats Likelihood function and its propertie Uniqueness of the MLE Likelihood equations Iterative Proportional Scaling

・ロト ・回ト ・ヨト ・ヨト

æ

Then $p_{12} \in \mathcal{P}_{\mathcal{A}}$ because

$$p_{12}(x) = c\sqrt{p_1(x)p_2(x)}$$

= $c\prod_{a\in\mathcal{A}}\sqrt{\psi_a^1(x)\psi_a^2(x)} = \prod_{a\in\mathcal{A}}\psi_a^{12}(x),$

where e.g. $\psi_a^{12} = c^{1/|\mathcal{A}|} \sqrt{\psi_a^1(x)\psi_a^2(x)}$. The Cauchy–Schwarz inequality yields

$$c^{-1} = \sum_{x} \sqrt{p_1(x)p_2(x)} < \sqrt{\sum_{x} p_1(x)} \sqrt{\sum_{x} p_2(x)} = 1.$$

Log-linear models Maximum likelihood Log-linear models Maximum likelihood Likelihood function and its properties Likelihood function and its properties Likelihood guations Iterative Proportional Scaling

Hence

$$L(p_{12}) = \prod_{x} p_{12}(x)^{n(x)}$$

= $\prod_{x} \left\{ c \{ \sqrt{p_1(x)p_2(x)} \right\}^{n(x)}$
= $c^n \prod_{x} \sqrt{p_1(x)}^{n(x)} \prod_{x} \sqrt{p_2(x)}^{n(x)}$
= $c^n \sqrt{L(p_1)L(p_2)}$
> $\sqrt{L(p_1)L(p_2)} = L(p_1) = L(p_2),$

which contradicts (1). Hence we conclude $p_1 = p_2$. The extension to $\overline{\mathcal{P}_A}$ is almost identical. It just needs a limit argument to establish $p_1, p_2 \in \overline{\mathcal{P}_A} \Rightarrow p_{12} \in \overline{\mathcal{P}_A}$.

イロト イヨト イヨト イヨト

・ロン ・回と ・ヨン・

The maximum likelihood estimate \hat{p} of p is the unique element of $\overline{\mathcal{P}_{\mathcal{A}}}$ which satisfies the system of equations

$$n\hat{p}(x_a) = n(x_a), \forall a \in \mathcal{A}, x_a \in \mathcal{X}_a.$$
 (2)

Here $g(x_a) = \sum_{y:y_a=x_a} g(y)$ is the *a*-marginal of the function *g*. The system of equations (2) expresses the *fitting of the marginals* in \mathcal{A} .

It can be seen as an instance of the fact that in an exponential family (log-linear \sim exponential), the MLE is found by equating the sufficient statistics (marginal counts) to their expectation.

Proof: Assume $p^* \in \mathcal{P}_{\mathcal{A}}$ is a solution to the equations (2). That p^* maximizes the likelihood function follows from the calculation below, where $p \in \mathcal{P}_{\mathcal{A}}$ is arbitrary and $\phi_a = \log \psi_a$:

$$\log L(p) = \sum_{x \in \mathcal{X}} n(x) \log p(x) = \sum_{x \in \mathcal{X}} n(x) \sum_{a \in \mathcal{A}} \phi_a(x)$$
$$= \sum_{a \in \mathcal{A}} \sum_{x \in \mathcal{X}} n(x) \phi_a(x)$$
$$= \sum_{a \in \mathcal{A}} \sum_{x_a \in \mathcal{X}_a} \sum_{y: y_a = x_a} n(y) \phi_a(y)$$
$$= \sum_{a \in \mathcal{A}} \sum_{x_a \in \mathcal{X}_a} n(x_a) \phi_a(x).$$

・ロト ・回ト ・ヨト ・ヨト

3

Log-linear models Maximum likelihood Itkelihood function and its properties Uniqueness of the MLE Likelihood equations Iterative Proportional Scaling

Further we get

$$\log L(p) = \sum_{a \in \mathcal{A}} \sum_{x_a \in \mathcal{X}_a} n(x_a) \phi_a(x)$$
$$= \sum_{a \in \mathcal{A}} \sum_{x_a \in \mathcal{X}_a} np^*(x_a) \phi_a(x)$$
$$= \sum_{a \in \mathcal{A}} \sum_{x \in \mathcal{X}} np^*(x) \phi_a(x)$$
$$= \sum_{x \in \mathcal{X}} np^*(x) \log p(x).$$

Thus, for any $p \in \mathcal{P}_{\mathcal{A}}$ we have established that

$$\log L(p) = \sum_{x \in \mathcal{X}} np^*(x) \log p(x).$$

・ロン ・回 と ・ヨン ・ヨン

3

・ロト ・回ト ・ヨト ・ヨト

æ

This is in particular also true for p^* . The information inequality now yields

$$\log L(p) = \sum_{x \in \mathcal{X}} np^*(x) \log p(x)$$

$$\leq \sum_{x \in \mathcal{X}} np^*(x) \log p^*(x) = \log L(p^*).$$

The case of $p^* \in \overline{\mathcal{P}_{\mathcal{A}}}$ needs an additional limit argument.

소리가 소문가 소문가 소문가

To show that the equations (2) indeed have a solution, we simply describe a convergent algorithm which solves it. This cycles (repeatedly) through all the *a*-marginals in \mathcal{A} and fit them one by one.

For $a \in A$ define the following *scaling* operation on *p*:

$$(T_a p)(x) \leftarrow p(x) \frac{n(x_a)}{np(x_a)}, \quad x \in \mathcal{X}$$

where 0/0 = 0 and b/0 is undefined if $b \neq 0$.

Data formats Likelihood function and its properties Uniqueness of the MLE Likelihood equations Iterative Proportional Scaling

.

・ロン ・回 と ・ 回 と ・ 回 と

3

Fitting the marginals

The operation T_a fits the a-marginal if $p(x_a) > 0$ when $n(x_a) > 0$:

$$n(T_a p)(x_a) = n \sum_{y: y_a = x_a} p(y) \frac{n(y_a)}{n p(y_a)}$$
$$= n \frac{n(x_a)}{n p(x_a)} \sum_{y: y_a = x_a} p(y)$$
$$= n \frac{n(x_a)}{n p(x_a)} p(x_a) = n(x_a)$$

Data formats Likelihood function and its properties Uniqueness of the MLE Likelihood equations Iterative Proportional Scaling

Make an ordering of the generators $\mathcal{A} = \{a_1, \ldots, a_k\}$. Define S by a full cycle of scalings

$$Sp = T_{a_k} \cdots T_{a_2} T_{a_1}.$$

Define the iteration

$$p_0(x) \leftarrow 1/|\mathcal{X}|, \quad p_n = Sp_{n-1}, n = 1, \dots$$

It then holds that

$$\lim_{n\to\infty}p_n=\hat{p}$$

where \hat{p} is the unique maximum likelihood estimate of $p \in \overline{\mathcal{P}_{\mathcal{A}}}$, i.e. the solution of the equation system (2).

・ロン ・回 と ・ 回 と ・ 回 と

Known as the *IPS*-algorithm or *IPF*-algorithm, or as a variety of other names. Implemented e.g. (inefficiently) in *R* in loglin with front end loglm in MASS. Key elements in proof:

- 1. If $p \in \overline{\mathcal{P}_{\mathcal{A}}}$, so is $T_a p$;
- 2. T_a is continuous at any point p of $\overline{\mathcal{P}_A}$ with $p(x_a) \neq 0$ whenever $n(x_a) = 0$;
- 3. $L(T_ap) \ge L(p)$ so likelihood always increases;
- 4. \hat{p} is the unique fixpoint for T (and S);
- 5. $\overline{\mathcal{P}_{\mathcal{A}}}$ is compact.

Data formats Likelihood function and its properties Uniqueness of the MLE Likelihood equations Iterative Proportional Scaling

・ロン ・回 と ・ 回 と ・ 回 と

3

A simple example

Admitted			
Sex	Yes	No	S-marginal
Male	1198	1493	2691
Female	557	1278	1835
A-marginal	1755	2771	4526

Admissions data from Berkeley. Consider $A \perp S$, corresponding to $\mathcal{A} = \{\{A\}, \{S\}\}$. We should fit A-marginal and S-marginal iteratively.

Data formats Likelihood function and its properties Uniqueness of the MLE Likelihood equations Iterative Proportional Scaling

・ロト ・回 ト ・ヨト ・ヨト

3

Initial values

Sex	Yes	No	S-marginal
Male	1131.5	1131.5	2691
Female	1131.5	1131.5	1835
A-marginal	1755	2771	4526

Entries all equal to 4526/4. Gives initial values of np_0 .

Data formats Likelihood function and its properties Uniqueness of the MLE Likelihood equations Iterative Proportional Scaling

イロン イヨン イヨン イヨン

Э

Fitting S-marginal

Sex	Yes	No	S-marginal
Male	1345.5	1345.5	2691
Female	917.5	917.5	1835
A-marginal	1755	2771	4526

For example

$$1345.5 = 1131.5 \frac{2691}{1131.5 + 1131.5}$$

and so on.

Data formats Likelihood function and its properties Uniqueness of the MLE Likelihood equations Iterative Proportional Scaling

ヘロン 人間 とくほど くほとう

3

Fitting A-marginal

Admitted			
Sex	Yes	No	S-marginal
Male	1043.46	1647.54	2691
Female	711.54	1123.46	1835
A-marginal	1755	2771	4526

For example

$$711.54 = 917.5 \frac{1755}{917.5 + 1345.5}$$

and so on.

Algorithm has converged, as both marginals now fit!

Data formats Likelihood function and its properties Uniqueness of the MLE Likelihood equations Iterative Proportional Scaling

・ロン ・回と ・ヨン・

Normalised to probabilities

Admitted			
Sex	Yes	No	S-marginal
Male	0.231	0.364	0.595
Female	0.157	0.248	0.405
A-marginal	0.388	0.612	1

Dividing everything by 4526 yields \hat{p} .

It is overkill to use the IPS algorithm as there is an explicit formula, as we shall see next time.