1. Consider $X \sim \mathcal{N}_{3}(0, \Sigma)$. Show that $X_{1} \Perp X_{2} \mid X_{3}$ if and only if

$$
\rho_{12}=\rho_{13} \rho_{23},
$$

where $\rho_{i j}$ denotes the correlation between X_{i} and X_{j}.
2. Show that if $X \sim \mathcal{N}_{3}(0, \Sigma)$ with Σ regular, then $X_{1} \Perp X_{2}$ and $X_{1} \Perp X_{2} \mid X_{3}$ implies that either $X_{1} \Perp\left(X_{2}, X_{3}\right)$ or $\left(X_{1}, X_{3}\right) \Perp X_{2}$.
3. Consider a Gaussian distribution $\mathcal{N}_{4}(0, \Sigma)$ with

$$
K=\Sigma^{-1}=\left(\begin{array}{cccc}
7 & 1 & 4 & 4 \\
1 & 12 & 2 & 5 \\
4 & 2 & 14 & 2 \\
4 & 5 & 2 & 8
\end{array}\right)
$$

What is the conditional distribution of X_{2} given $\left(X_{1}=1, X_{4}=0\right)$?
4. Let $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ be independent with $X_{i} \sim \mathcal{N}(0,1)$. Define recursively $Y_{1} \leftarrow X_{1}, \quad Y_{2} \leftarrow X_{2}+Y_{1}, \quad Y_{3} \leftarrow X_{3}+Y_{2}, \quad Y_{4} \leftarrow X_{4}+Y_{3}, \quad Y_{5} \leftarrow X_{5}+Y_{4}$.
(a) Find the covariance matrix Σ of Y;
(b) Find the concentration matrix $K=\Sigma^{-1}$ of Y.
(c) Construct the dependence graph of Y;
(d) Find the conditional distribution of Y_{3} given $Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{4}=$ $y_{4}, Y_{5}=y_{5}$.
5. Consider a Gaussian distribution $\mathcal{N}_{5}(0, \Sigma)$ with $K=\Sigma^{-1}$ satisfying the conditional independence restrictions of the graph $\mathcal{G}=(V, E)$ with $V=$ $\{1,2,3,4,5\}$ and $E=\{\{1,2\},\{1,3\},\{1,4\},\{1,5\}\}$.
(a) Show that the determinant of Σ satisfies

$$
\operatorname{det} \Sigma=\prod_{i=1}^{5} \sigma_{i i} \prod_{j=2}^{5}\left(1-\rho_{1 j}^{2}\right)
$$

where $\rho_{i j}$ is the correlation between X_{i} and X_{j};
(b) Express the covariance σ_{23} in terms of the variances $\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{44}, \sigma_{55}$ and the covariances $\sigma_{12}, \sigma_{13}, \sigma_{14}, \sigma_{15}$.
6. Consider a Gaussian distribution $\mathcal{N}_{4}(0, \Sigma)$ with $K=\Sigma^{-1}$ satisfying the conditional independence restrictions of the graph $\mathcal{G}=(V, E)$ with $V=$ $\{1,2,3,4\}$ and $E=\{\{1,2\},\{2,3\},\{3,4\}\}$. Assume that the following Wishart matrix has been observed, with 10 degrees of freedom:

$$
\left(\begin{array}{cccc}
10 & 1 & 4 & 4 \\
1 & 10 & 2 & 5 \\
4 & 2 & 10 & 2 \\
4 & 5 & 2 & 10
\end{array}\right)
$$

Find the maximum likelihood estimate of the concentration matrix.

