- 1. (a) Define what is meant by saying that a distribution P factorizes w.r.t. a directed acyclic graph \mathcal{D} .
 - (b) Define what is meant by saying that a distribution P satisfies the *local* directed Markov property w.r.t. a directed acyclic graph \mathcal{D} .
 - (c) What is the relation between factorization and the local directed Markov property?
 - (d) Consider a directed acyclic graph \mathcal{D} with arrows $A \to B, B \to D, B \to E, C \to E, D \to E, D \to F, E \to F$.
 - i. Form the moral graph \mathcal{D} .
 - ii. Assume P satisfies the local directed Markov property with respect to \mathcal{D} . Which of the following statements can be concluded? Explain your reasoning?

 $C \perp\!\!\!\perp D \mid B, \quad A \perp\!\!\!\perp C \mid E, \quad B \perp\!\!\!\perp F \mid \{E, A\}.$

- (e) Define what it means that a directed acyclic graph \mathcal{D}' is Markov equivalent to \mathcal{D} ?
- (f) What are the conditions for \mathcal{D} and \mathcal{D}' to be Markov equivalent?
- (g) Consider the following directed acyclic graphs obtained from \mathcal{D} by reversing the arrows:
 - i. \mathcal{D}_1 has reversed the arrow from $A \to B$, i.e. it has arrows $B \to A, B \to D, B \to E, C \to E, D \to E, D \to F, E \to F$;
 - ii. \mathcal{D}_2 has reversed the arrow from $D \to E$, i.e. it has arrows $A \to B, B \to D, B \to E, C \to E, E \to D, D \to F, E \to F$.

Which of these directed acyclic graphs are Markov equivalent to \mathcal{D} ?

The above question is from the Part C examination held in Trinity term 2008.

- 2. Consider the DAG \mathcal{D} with arrows $A \to C, B \to C, B \to D, C \to E, D \to F, E \to G, E \to H, F \to G, G \to J, I \to J.$
 - (a) Find the moral graph \mathcal{D}^m of \mathcal{D} ;
 - (b) Find a minimal chordal cover \mathcal{G} of \mathcal{D}^m , i.e. a chordal graph $\mathcal{G} \supset \mathcal{D}^m$ with the property that removal of any edge in \mathcal{G} which is not an edge in \mathcal{D}^m will not be chordal;
 - (c) Arrange the cliques of \mathcal{G} in a junction tree;
 - (d) For a specification of all conditional distributions $p_{v \mid pa(v)}, v \in V$, allocate appropriate potentials to the junction tree to prepare for probability propagation.

Steffen L. Lauritzen, University of Oxford

3. Consider random variables X_1, \ldots, X_6 taking values in $\{-1, 1\}$ and having distribution P with joint probability mass function determined as

 $p(x) \propto \exp\{\theta(x_1x_2 + x_2x_3 + x_3x_4 + x_3x_5)\},\$

where $\theta \neq 0$.

- (a) Find the dependence graph of P and identify its cliques;
- (b) Set up an appropriate junction tree for probability propagation;
- (c) Allocate potentials to cliques;
- (d) Calculate $P(X_5 = 1 | X_1 = 1, X_4 = 1)$ by probability propagation.

Steffen L. Lauritzen, University of Oxford

November 16, 2009