Triangulated graphs and junction trees

Aarhus University, Fall 2003, Lecture 5

Steffen L. Lauritzen, Aalborg University

Decomposition of graphs

$\mathcal{G}=(V, E)$ undirected graph
(A, B, C) triple of disjoint subsets of V is a decomposition of \mathcal{G}, if and the following two conditions both hold:

1. $V=A \cup B \cup C$
2. C separates A from B;
3. C is a complete subset of V.

Decomposition is proper if $A \neq \emptyset$ and $B \neq \emptyset$.
A graph is prime if no proper decomposition exists.

Decomposable graphs

\mathcal{G} is decomposable if either:

- \mathcal{G} is complete, or
- There exists proper decomposition (A, B, C) such that both subgraphs $\mathcal{G}_{A \cup C}$ and $\mathcal{G}_{B \cup C}$ are decomposable.

Bad name! Fully decomposable much better.
Then 'decomposable' can be used to mean the opposite of prime.

Chordal and decomposable graphs

Graph is chordal if all cycles of length ≥ 4 have chords.
Other common names are triangulated graphs or rigid circuit graphs

Equivalent conditions for an undirected \mathcal{G} :

1. \mathcal{G} is decomposable,
2. \mathcal{G} is chordal,
3. Every minimal (α, β)-separator is complete.

Perfect numberings

A numbering $\left(v_{1}, \ldots, v_{k}\right)$ of the vertices V of an undirected graph \mathcal{G} is called perfect if for all j, $\mathrm{bd} v_{j} \cap\left\{v_{1}, \ldots, v_{j-1}\right\}$, induce a complete subgraph.

An undirected graph is chordal if and only if it admits a perfect numbering.

If \mathcal{G} is chordal and v is an arbitrary node of \mathcal{G}, then a perfect numbering of \mathcal{G} exists with $v_{1}=v$

Maximum cardinality search checks chordality of graph and constructs perfect numbering with complexity $O(|V|+|E|)$.

Maximum cardinality search

1. Choose arbitrary $v \in V$ and let $v_{1}=v$;
2. When v_{j} has been chosen, choose v_{j+1} arbitrarily among the vertices with maximal number of numbered neighbours;
3. If at any stage $\operatorname{bd}\left(v_{j}\right) \cap\left\{v_{1}, \ldots, v_{j-1}\right\}$ is not complete, the graph is not chordal
4. Else, the graph is chordal and the final numbering $\left(v_{1}, \ldots, v_{k}\right)$ is perfect.

Note: Not all perfect numberings are MCS-generated!

Maximum cardinality search (formal)

- Output:= ' \mathcal{G} is chordal'.
- Counter $i:=1, L:=\emptyset, c(v):=0$ for all $v \in V$.
- While $L \neq V$:
- $U:=V \backslash L$.
- Select any v maximizing $c(v)$ over $v \in U$, $v_{i}:=v$.
- If $\Pi\left(v_{i}\right):=\operatorname{bd}\left(v_{i}\right) \cap L$ is not complete in \mathcal{G} : Output:= ' \mathcal{G} is not chordal'. Otherwise, $c(w):=c(w)+1$ for $w \in \operatorname{bd}\left(v_{i}\right) \cap U$.
- $L:=L \cup\left\{v_{i}\right\}, i:=i+1$.
- Report Output.

Finding the cliques of a chordal graph

Use numbering $\left(v_{1}, \ldots, v_{k}\right)$ obtained by maximum cardinality search, we can find the cliques of a chordal graph as follows. Let

$$
\Pi\left(v_{i}\right)=\operatorname{bd} v_{i} \cap\left\{v_{1}, \ldots, v_{i-1}\right\}
$$

and $\pi_{i}=\left|\Pi\left(v_{i}\right)\right|$
Call v_{i} a ladder node if $i=k$, or if $i<k$ and $\pi_{i+1}<1+\pi_{i}$. Let the j th ladder node, in ascending order, be λ_{j}, and define $C_{j}=\left\{\lambda_{j}\right\} \cup \Pi\left(\lambda_{j}\right)$.
There is a one-to-one correspondence between the ladder nodes and the cliques of \mathcal{G}, the clique associated with ladder node λ_{j} being C_{j}.

Running intersection property

The clique ordering (C_{1}, C_{2}, \ldots) will possess the running intersection property:

$$
C_{j} \cap\left(C_{1} \cup \cdots \cup C_{j-1}\right) \subseteq C_{i}
$$

for some $i<j$.
Junction tree can then easily be constructed, by linking C_{j} to any C_{i} satisfying RIP condition above.

Triangulation algorithms

If \mathcal{G} is non-chordal, it is non-trivial problem to find a optimal triangulation (small cliques).

Any numbering $\left(v_{1}, \ldots, v_{k}\right)$ induces a triangulation by adding links, beginning with v_{k}, to complete $\operatorname{bd}\left(v_{j}\right) \cap\left\{v_{1}, \ldots, v_{j-1}\right\}$.

One-step-look-ahead algorithms finds first v_{k} so that $\operatorname{bd}\left(v_{k}\right)$ is 'close' to complete, fills-in and removes v_{k}, now using the same procedure to identify v_{k-1}, etc.

Algorithms exist which find optimal triangulations but in general they either return an optimal triangulation or give up at some point.

