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Entropy

The entropy of a discrete probability distribution P is

Ent(P ) = −
∑

x

p(x) log p(x).

Entropy is a measure of spread of the distribution and it is
always positive.

The entropy is never larger than the entropy of the uniform
distribution:

Let Pu(x) = 1/|X |, then it holds that

0 ≤ Ent(P ) ≤ Ent(Pu) = log |X |.

Proof on next overhead.
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Uniform distribution has maximal entropy

The information inequality∑
x

p(x) log p(x) ≥
∑

x

p(x) log q(x)

yields

Ent(P ) = −
∑

x

p(x) log p(x)

≤ −
∑

x

p(x) log
1
|X |

= −
∑

x

1
|X |

log
1
|X |

= Ent(Pu).
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Kullback-Leibler divergence

The KL divergence between P and Q is

KL(P : Q) =
∑

x

p(x) log
p(x)
q(x)

.

Also known as relative entropy of Q with respect to P .

Information inequality says that

KL(P : Q) ≥ 0 and KL(P : Q) = 0 if and only if P = Q,

so KL divergence defines an (asymmetric) distance measure
between probability distributions.
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Incomplete observations

Bayesian network with conditional probability distributions
only partially known:

p(x) =
∏
v∈V

p(xv |xpa(v), θ)

where θ ∈ Θ ⊆ Rk is unknown parameter.

Instead of complete data (x1, . . . , xn), only incomplete
data (x1

A1
, . . . , xn

An
) available, where Ai ⊆ V .

Example: paternity cases. Unknown parameters: gene
frequencies, probability of paternity, possibly mutation
rates.
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EM algorithm

Complete data x, incomplete data (observed) y = g(x).
Complete data log-likelihood :

l(θ) = log L(x | θ) = log p(x | θ).

The marginal log-likelihood is

ly(θ) = log L(θ | y) = log p(y | θ).

Wish to maximize ly in θ but ly is unpleasant:

ly(θ) = log
∑

x:g(x)=y

p(x | θ).

However, we assume that we know how to maximize l.
How can this be exploited?
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E-step and M-step

We let θ∗ be arbitrary but fixed.

The E-step calculates expected complete data
log-likelihood q(θ | θ∗):

q(θ | θ∗) = Eθ∗{l(θ) | y} =
∑

x:g(x)=y

p(x | y, θ∗) log p(x | θ).

The M-step maximizes q(· | θ∗) for fixed θ∗:

The algorithm alternates between an E-step and an M-step.

After an E-step and subsequent M-step, the likelihood
function has never decreased, as we shall now show.
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EM algorithm

Since p(x | y, θ) = χg(x)(y)p(x | θ)/p(y | θ) we have

q(θ | θ∗) =
∑

x

p(x | y, θ∗) log{p(y | θ)p(x | y, θ)}

= log p(y | θ) +
∑

x

p(x | y, θ∗) log p(x | y, θ)

= ly(θ)−
∑

x

p(x | y, θ∗) log p(x | y, θ∗)

−
∑

x

p(x | y, θ∗) log
p(x | y, θ∗)
p(x | y, θ)

= ly(θ)− Ent P y
θ∗ −KL(P y

θ∗ : P y
θ ).
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Expected and complete data likelihood

-
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∇ly(θ∗) = ∇q(θ∗ | θ∗)
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Likelihood monotonicity of EM algorithm

Let θ0 = θ∗ and θn+1 = arg maxθ q(θ | θn).

Then

ly(θn+1) = q(θn+1 | θn) + Ent(P y
θn

) + KL(P y
θn+1

: P y
θn

)

≥ q(θn | θn) + Ent(P y
θn

) = ly(θn).

So likelihood never decreases. Note, this also holds if just
q(θn+1 | θn) ≥ q(θn | θn).
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E-step for Bayesian networks

The complete data likelihood is

log p(x | θ) =
n∑

i=1

log p(xi | θ) =
∑

x

n(x) log p(x | θ).

where n(x) = #{i : xi = x}. Using factorization we get

log p(x | θ) =
∑

x

∑
v

n(x) log p(xv |xpa(v), θ)

=
∑

v

∑
xv∪pa(v)

n(xv∪pa(v)) log p(xv |xpa(v), θ),

with n(xv∪pa(v)) = #{i : xi
v∪pa(v) = xv∪pa(v)}. So E-step

equivalent to computing

n∗(xv∪pa(v)) = E{N(xv∪pa(v)) | y, θ∗}.
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Computing expected counts

We now get

n∗(xv∪pa(v)) = E{N(xv∪pa(v)) | y, θ∗}

=
∑

i

E{χxv∪pa(v)(x
i
v∪pa(v)) | y, θ∗}

=
∑

i

E{χxv∪pa(v)(x
i
v∪pa(v)) |x

i
Ai

, θ∗}

=
∑

i

p(xv∪pa(v) |xi
Ai

, θ∗).

Each of the latter terms can be calculated by probability
propagation as can the marginal likelihood function:

log p(y | θ) =
∑

i

log p(xi
Ai
| θ).
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M-step for Bayesian networks

Note the similarity between the complete data likelihood
and q:

log p(x | θ) =
∑

v

∑
xv∪pa(v)

n(xv∪pa(v)) log p(xv |xpa(v), θ)

whereasx

q(θ | θ∗) =
∑

v

∑
xv∪pa(v)

n∗(xv∪pa(v)) log p(xv |xpa(v), θ).

So any algorithm which maximizes the complete data
likelihood can be used to maximize q in the M-step.
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