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The entropy of a discrete probability distribution P is

Ent(P Z p(z) log p(x

Entropy is a measure of spread of the distribution and it is
always positive.

The entropy is never larger than the entropy of the uniform
distribution:

Let P,(z) = 1/|X|, then it holds that
0 < Ent(P) < Ent(P,) = log |X].

Proof on next overhead.



Uniform distribution has maximal entropy

The information inequality

Z ) log p(x >Zp )log g(z

x

yields

Ent(P) = - Zp ) log p(x
1
< - Zp(ﬂc) log X
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= — —log — = Ent(P,).
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Kullback-Leibler divergence

The KL divergence between P and Q is
(:1:
Zp a(@)
Also known as relative entropy of () with respect to P.
Information inequality says that

KL(P:Q)>0and KL(P: Q) =0 if and only if P = Q,

so KL divergence defines an (asymmetric) distance measure
between probability distributions.



Bayesian network with conditional probability distributions
only partially known:

p(a:) = H p(xv ‘xpa(v)v 9)

veV

where § € © C R* is unknown parameter.

Instead of complete data (z!,...,a™), only incomplete
data (zly ,...,2" ) available, where 4; C V.

Example: paternity cases. Unknown parameters: gene
frequencies, probability of paternity, possibly mutation
rates.



Complete data x, incomplete data (observed) y = g(x).
Complete data log-likelihood:

1(0) =log L(x|0) =logp(x|0).

The marginal log-likelihood is
ly(6) =log L(6 | y) = logp(y | 6).

Wish to maximize [, in 6 but [, is unpleasant:
L(0) =log > p(z]0).
z:g(z)=y

However, we assume that we know how to maximize .
How can this be exploited?



E-step and M-step

We let 8* be arbitrary but fixed.
The E-step calculates expected complete data
log-likelihood q(6 | 6*):

9(010°) =Eg-{I(0) |y} = D plx|y,0")logp(x|0).
z:g(z)=y
The M-step maximizes q(- | 0*) for fixed 6*:
The algorithm alternates between an E-step and an M-step.

After an E-step and subsequent M-step, the likelihood
function has never decreased, as we shall now show.



Since p(4.0) = Xy(a) (1)(x ] 6)/p(y] 6) we have

q(010%) = > p(x|y,07)log{p(y|0)p(z|y,0)}

x

= logp(y|0) + > plx|y,0%)logp(x|y,0)
= Zp |y, 0%) logp( |y, 6%)

“ ( |y o)

= 1(9) Ent PY, — KL(P-” Py).




Expected and complete data likelihood

KL(P}. : P})

1,(6) — Ent(PY.)

q(0167)

1,(0) — Ent(PJ.) = q(0|0*) + KL(Pj. : P})
Vi, (67) = V(6" [67)



Likelihood monotonicity of EM algorithm

Let 8y = 6* and 0,11 = argmaxg q(0 | 0,,).
Then

Ly(Bas1) = q(Bnsr|00) + Ent(PY) + KL(PY

Ony1 - Pé;n)
Q(en | en) + Ent(Pé/n) = ly(an)'

v

So likelihood never decreases. Note, this also holds if just
Q(‘gn-i-l |9n) > Q(en | 9n>-



The complete data likelihood is
logp(x | 0) Zlogp Zn(m) logp(z|0).
x

where n(z) = #{i : 2 = z}. Using factorization we get

Ing(x | 0) = Z Z Ing Ty |xpa(v), 0)
= Z Z vUpa(v) logp(xv |Ipa (v)» 0)7

UV Zyupa(v)

with n(2,Upagw)) = #{4 ¢ inpa(v) = TyUpa(v) }- S0 E-step
equivalent to computing

n* ('rvUpa('u)) = E{N(‘rvUpa(v)) |ya 9*}



We now get
n*(vapa(v)) = E{N(vapa(v)) | Y, 9*}
Z E{XIUUpa(U) (miUpa(v)) ‘ Y, 9*}

Z E{XmUUpa('u) (inpa(v)) ‘ xkl ’ 9*}

Zp(x'uUpa(v) | qul ) 9*)

Each of the latter terms can be calculated by probability
propagation as can the marginal likelihood function:

logp(y | 0) = Zlogp 'y, 19).



Note the similarity between the complete data likelihood
and ¢:

logp(z | 6) Z Z (Zuupa(v)) 108 P(To | Tpa(w) s )
UV Tyupa(v)

whereasx
q(0167) Z Z n*(Zyupa(v)) 108 P(Tv | Tpa(w), 0)-
UV Zyupa(v)

So any algorithm which maximizes the complete data
likelihood can be used to maximize ¢ in the M-step.



