The EM algorithm for Bayesian networks

Aarhus University, Fall 2003, Lecture 8

Steffen L. Lauritzen, Aalborg University

Entropy

The entropy of a discrete probability distribution P is

$$\operatorname{Ent}(P) = -\sum_{x} p(x) \log p(x).$$

Entropy is a measure of *spread* of the distribution and it is always positive.

The entropy is never larger than the entropy of the uniform distribution:

Let $P_u(x) = 1/|\mathcal{X}|$, then it holds that

$$0 \le \operatorname{Ent}(P) \le \operatorname{Ent}(P_u) = \log |\mathcal{X}|.$$

Proof on next overhead.

Uniform distribution has maximal entropy

The information inequality

$$\sum_{x} p(x) \log p(x) \ge \sum_{x} p(x) \log q(x)$$

vields

$$\operatorname{Ent}(P) = -\sum_{x} p(x) \log p(x)$$

$$\leq -\sum_{x} p(x) \log \frac{1}{|\mathcal{X}|}$$

$$= -\sum_{x} \frac{1}{|\mathcal{X}|} \log \frac{1}{|\mathcal{X}|} = \operatorname{Ent}(P_u).$$

Kullback-Leibler divergence

The KL divergence between P and Q is

$$KL(P:Q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}.$$

Also known as *relative entropy* of Q with respect to P.

Information inequality says that

$$KL(P:Q) \ge 0$$
 and $KL(P:Q) = 0$ if and only if $P = Q$,

so KL divergence defines an (asymmetric) distance measure between probability distributions.

Incomplete observations

Bayesian network with conditional probability distributions only partially known:

$$p(x) = \prod_{v \in V} p(x_v \mid x_{pa(v)}, \theta)$$

where $\theta \in \Theta \subseteq \mathcal{R}^k$ is unknown parameter.

Instead of complete data (x^1, \ldots, x^n) , only incomplete data $(x^1_{A_1}, \ldots, x^n_{A_n})$ available, where $A_i \subseteq V$.

Example: paternity cases. Unknown parameters: gene frequencies, probability of paternity, possibly mutation rates.

EM algorithm

Complete data x, incomplete data (observed) y = g(x). Complete data log-likelihood:

$$l(\theta) = \log L(x \mid \theta) = \log p(x \mid \theta).$$

The marginal log-likelihood is

$$l_y(\theta) = \log L(\theta \mid y) = \log p(y \mid \theta).$$

Wish to maximize l_u in θ but l_u is unpleasant:

$$l_y(\theta) = \log \sum_{x:q(x)=y} p(x \mid \theta).$$

However, we assume that we know how to maximize l. How can this be exploited?

E-step and M-step

We let θ^* be arbitrary but fixed.

The E-step calculates expected complete data log-likelihood $q(\theta \mid \theta^*)$:

$$q(\theta | \theta^*) = \mathbf{E}_{\theta^*} \{ l(\theta) | y \} = \sum_{x: g(x) = y} p(x | y, \theta^*) \log p(x | \theta).$$

The M-step maximizes $q(\cdot | \theta^*)$ for fixed θ^* :

The algorithm alternates between an E-step and an M-step.

After an E-step and subsequent M-step, the likelihood function has never decreased, as we shall now show.

EM algorithm

Since $p(x \mid y, \theta) = \chi_{q(x)}(y)p(x \mid \theta)/p(y \mid \theta)$ we have

$$q(\theta \mid \theta^*) = \sum_{x} p(x \mid y, \theta^*) \log\{p(y \mid \theta)p(x \mid y, \theta)\}$$

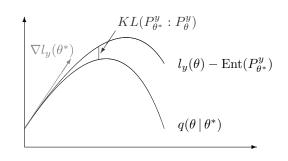
$$= \log p(y \mid \theta) + \sum_{x} p(x \mid y, \theta^*) \log p(x \mid y, \theta)$$

$$= l_y(\theta) - \sum_{x} p(x \mid y, \theta^*) \log p(x \mid y, \theta^*)$$

$$- \sum_{x} p(x \mid y, \theta^*) \log \frac{p(x \mid y, \theta^*)}{p(x \mid y, \theta)}$$

$$= l_y(\theta) - \operatorname{Ent} P_{\theta*}^y - KL(P_{\theta*}^y : P_{\theta}^y).$$

Expected and complete data likelihood



$$l_y(\theta) - \text{Ent}(P_{\theta^*}^y) = q(\theta \mid \theta^*) + KL(P_{\theta^*}^y : P_{\theta}^y)$$
$$\nabla l_y(\theta^*) = \nabla q(\theta^* \mid \theta^*)$$

Likelihood monotonicity of EM algorithm

Let $\theta_0 = \theta^*$ and $\theta_{n+1} = \arg \max_{\theta} q(\theta \mid \theta_n)$.

Then

$$l_y(\theta_{n+1}) = q(\theta_{n+1} | \theta_n) + \operatorname{Ent}(P_{\theta_n}^y) + KL(P_{\theta_{n+1}}^y : P_{\theta_n}^y)$$

$$\geq q(\theta_n | \theta_n) + \operatorname{Ent}(P_{\theta_n}^y) = l_y(\theta_n).$$

So likelihood never decreases. Note, this also holds if just $q(\theta_{n+1} \mid \theta_n) \geq q(\theta_n \mid \theta_n)$.

E-step for Bayesian networks

The complete data likelihood is

$$\log p(x \mid \theta) = \sum_{i=1}^{n} \log p(x^{i} \mid \theta) = \sum_{i=1}^{n} n(x) \log p(x \mid \theta).$$

where $n(x) = \#\{i : x^i = x\}$. Using factorization we get

$$\log p(x \mid \theta) = \sum_{x} \sum_{v} n(x) \log p(x_v \mid x_{pa(v)}, \theta)$$
$$= \sum_{v} \sum_{x_{v \cup pa(v)}} n(x_{v \cup pa(v)}) \log p(x_v \mid x_{pa(v)}, \theta),$$

with $n(x_{v \cup pa(v)}) = \#\{i: x_{v \cup pa(v)}^i = x_{v \cup pa(v)}\}$. So E-step equivalent to computing

$$n^*(x_{v \cup pa(v)}) = \mathbf{E}\{N(x_{v \cup pa(v)}) \mid y, \theta^*\}.$$

Computing expected counts

We now get

$$n^*(x_{v \cup \mathrm{pa}(v)}) = \mathbf{E}\{N(x_{v \cup \mathrm{pa}(v)}) \mid y, \theta^*\}$$

$$= \sum_{i} \mathbf{E}\{\chi_{x_{v \cup \mathrm{pa}(v)}}(x_{v \cup \mathrm{pa}(v)}^{i}) \mid y, \theta^*\}$$

$$= \sum_{i} \mathbf{E}\{\chi_{x_{v \cup \mathrm{pa}(v)}}(x_{v \cup \mathrm{pa}(v)}^{i}) \mid x_{A_i}^{i}, \theta^*\}$$

$$= \sum_{i} p(x_{v \cup \mathrm{pa}(v)} \mid x_{A_i}^{i}, \theta^*).$$

Each of the latter terms can be calculated by probability propagation as can the marginal likelihood function:

$$\log p(y \mid \theta) = \sum \log p(x_{A_i}^i \mid \theta).$$

M-step for Bayesian networks

Note the similarity between the complete data likelihood and q:

$$\log p(x \mid \theta) = \sum_{v} \sum_{x_{v \cup \text{pa}(v)}} n(x_{v \cup \text{pa}(v)}) \log p(x_v \mid x_{\text{pa}(v)}, \theta)$$

whereasx

$$q(\theta \mid \theta^*) = \sum_{v} \sum_{x_{v \cup \mathrm{pa}(v)}} n^*(x_{v \cup \mathrm{pa}(v)}) \log p(x_v \mid x_{\mathrm{pa}(v)}, \theta).$$

So any algorithm which maximizes the complete data likelihood can be used to maximize q in the M-step.