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Directed acyclic graphs

A directed acyclic graph D over a finite set V is a graph
with all edges being directed, no multiple edges, and no
directed cycles.

Absence of directed cycles means that, following arrows in
the graph, it is impossible to return to any point.

Graphical models based on DAGs have proved fundamental
and useful in a wealth of interesting applications, including
expert systems, genetics, complex biomedical statistics,
causal analysis, and machine learning.

The remainder of this course will give a glimpse into these
applications.
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Example of a directed graphical model

3



Factorisation with respect to a DAG

A probability distribution P over X = XV factorizes over a
DAG D if it has density f w.r.t. a product measure
µ = ⊗v∈V µv, where f has the form

(DF) : f(x) =
∏
v∈V

kv(xv |xpa(v))

where kv ≥ 0 and
∫
Xv
kv(xv |xpa(v)) dµv(xv) = 1.

(DF) is equivalent to (DF∗), where

(DF∗) : f(x) =
∏
v∈V

f(xv |xpa(v)),

i.e. it follows from (DF) that kv in fact are conditional
densities. Proof by induction!
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Example of DAG factorization
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The above graph corresponds to the factorization

f(x) = f(x1)f(x2 |x1)f(x3 |x1)f(x4 |x2)
× f(x5 |x2, x3)f(x6 |x3, x5)f(x7 |x4, x5, x6).
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Separation in DAGs

A trail τ from node a to node b in a DAG D is blocked by
S if it contains a node n ∈ τ such that

• either n ∈ S and edges of τ do not meet
head-to-head at n, or

• n and all its descendants are not in S, and edges of τ
meet head-to-head at n.

A trail that is not blocked is active. Two subsets A and B
of nodes are d-separated by S if all trails from A to B are
blocked by S. We write A⊥D B |S.
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Separation by example

3 6

1 5 7

2 4

u u
u u u

u u

-

@
@@R

�
���

@
@@R

-

@
@@R

@
@@R

�
���

�
���

-

3 6

1 5 7

2 4

u u
u u u

u u

-

@
@@R

�
���

@
@@R

-

@
@@R

@
@@R

�
���

�
���

-

For S = {5}, the trail (4, 2, 5, 3, 6) is active, whereas the
trails (4, 2, 5, 6) and (4, 7, 6) are blocked.

For S = {3, 5}, they are all blocked.
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Returning to example
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Hence 4⊥D 6 | 3, 5, but it is not true that 4⊥D 6 | 5 nor
that 4⊥D 6.
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Alternative equivalent separation

1. Reduce to subgraph induced by ancestral set of
A ∪B ∪ S

2. Add undirected edges between unmarried parents in
this subgraph

3. Drop directions on all edges. Process 2 and 3 is
known as moralization and result is moral graph.

4. Say that S m-separates A from B and write
A⊥mB | S if and only if S separates A from B in
this undirected graph.

It then holds that A⊥mB | S if and only if A⊥D B | S.

Sometimes (but not always) easier to use.
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Forming ancestral set
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The subgraph induced by all ancestors of nodes involved in
the query 4⊥m 6 | 3, 5?

10



Adding links between unmarried parents
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Adding an undirected edge between 2 and 3 with common
child 5 in the subgraph induced by all ancestors of nodes
involved in the query 4⊥m 6 | 3, 5?
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Dropping directions

3 6

1 5

2 4

u u
u u

u u
@

@@

�
��

@
@@

@
@@

�
��

Since {3, 5} separates 4 from 6 in this graph, we can
conclude that 4⊥m 6 | 3, 5
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Properties of d-separation

It holds for any DAG D that ⊥D satisfies graphoid axioms.

Clearly, this is then also true for ⊥m .

To show this is true, it is sometimes easy to use ⊥m ,
sometimes ⊥D .

For example, (S2) is trivial for ⊥D , whereas (S5) is trivial
for ⊥m .

So, equivalence of ⊥D and ⊥m is useful.
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Local and global directed Markov properties

A semigraphoid relation ⊥σ satisfies

(DL) the local Markov property if

∀α ∈ V : α⊥σ (nd(α) \ pa(α)) | pa(α);

(DG) the global Markov property if

A⊥D B |S =⇒ A⊥σ B |S.

For a DAG it holds that (DG) ⇐⇒ (DL) also if f(x) = 0 is
allowed.

There is also a pairwise property (DP). But it is less
natural, it holds that (DL) =⇒ (DP), but not conversely
unless f(x) > 0.
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Markov properties and factorization

In contrast to the undirected case, it holds for all f that
(DF) holds if and only if ⊥⊥ satisfies (DG), so global
Markov property and factorisation property is equivalent:

Thus, in the directed case

(DF) ⇐⇒ (DG) ⇐⇒ (DL)

and this is true whether f > 0 or not.
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Further properties

If P factorizes over D, it factorizes over the moralised
graph Dm

This is seen directly from the factorization:

f(x) =
∏
v∈V

f(xv |xpa(v)) =
∏
v∈V

ψ{v}∪pa(v)(x),

since {v} ∪ pa(v) are all complete in Dm.

Hence if P satisfies any of the directed Markov properties
w.r.t. D, it satisfies all Markov properties for Dm, so e.g.
any Markov chain is also a Markov field.
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Perfect DAGs

A DAG D is perfect if all parents are married. For a perfect
DAG D:

P satisfies (DG) w.r.t D if and and only if it satisfies (G)
w.r.t. its skeleton σ(D).

The skeleton is the undirected graph obtained from D by
ignoring directions.

An undirected graph G can be oriented as a perfect DAG if
and only if G is chordal , or triangulated , i.e. has rigid
circuits,

An undirected graph is chordal if all cycles of length ≥ 4
have chords. Also known as decomposable.
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Ancestral marginals

Consider a DAG D and an ancestral subset A ⊆ V .

If P factorizes w.r.t. D, it factorizes w.r.t. DA.

Proof by induction, using that if A is ancestral and A 6= V ,
there is a terminal vertex v0 with v0 6∈ A.

It now follows, that if P factorizes w.r.t. D:

A⊥mB |S =⇒ A⊥⊥B |S.

The equivalence of (DF), (DG) and (DL) now follows easily.

Only difficult proof of results on overheads is the
equivalence of ⊥D and ⊥m . Proof in Lauritzen (1996)
needs to allow self-intersecting paths to be correct.
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