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Conditional independence

Random variables X and Y are conditionally independent
given the random variable Z if

L(X |Y,Z) = L(X |Z).

We then write X ⊥⊥Y |Z (or X ⊥⊥P Y |Z)

Intuitively:

Knowing Z renders Y irrelevant for predicting X.

Factorisation of densities:

X ⊥⊥Y |Z ⇐⇒ f(x, y, z)f(z) = f(x, z)f(y, z)
⇐⇒ ∃a, b : f(x, y, z) = a(x, z)b(y, z).
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Fundamental properties

For random variables X, Y , Z, and W it holds

(C1) if X ⊥⊥Y |Z then Y ⊥⊥X |Z;

(C2) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥U |Z;

(C3) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥Y | (Z,U);

(C4) if X ⊥⊥Y |Z and X ⊥⊥W | (Y, Z), then
X ⊥⊥ (Y,W ) |Z;

If density w.r.t. product measure f(x, y, z, w) > 0 also

(C5) if X ⊥⊥Y | (Z,W ) and X ⊥⊥Z | (Y,W ) then
X ⊥⊥ (Y, Z) |W .
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Additional note on (C5)

f(x, y, z, w) > 0 is not necessary for (C5). Enough e.g.
that f(y, z, w) > 0 or f(x, z, w) > 0; see proof in Lauritzen
(1996).

In discrete and finite case it is even enough that for all w
with f(w) > 0 the bipartite graphs Gw = (Y ∪ Z, Ew)
defined by

y ∼w z ⇐⇒ f(y, z, w) > 0,

are all connected.

Alternatively with X replacing Y .

Is there a simple necessary and sufficient condition?
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Graphoid axioms

Ternary relation ⊥σ is graphoid if for all disjoint subsets
A, B, C, and D of V :

(S1) if A⊥σ B |C then B⊥σ A |C;

(S2) if A⊥σ B |C and D ⊆ B, then A⊥σ D |C;

(S3) if A⊥σ B |C and D ⊆ B, then A⊥σ B | (C ∪D);

(S4) if A⊥σ B |C and A⊥σ D | (B ∪ C), then
A⊥σ (B ∪D) |C;

(S5) if A⊥σ B | (C ∪D) and A⊥σ C | (B ∪D) then
A⊥σ (B ∪ C) |D.

Semigraphoid if only (S1)–(S4) holds.
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Separation in undirected graphs

Let G = (V,E) be finite and simple undirected graph (no
self-loops, no multiple edges).

For subsets A,B, S of V , let A⊥G B |S denote that S
separates A from B in G, i.e. that all paths from A to B
intersect S.

Fact: The relation ⊥G on subsets of V is a graphoid.

This fact is the reason for choosing the name ‘graphoid’ for
such separation relations.
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Probabilistic semigraphoids

V finite set, X = (Xv, v ∈ V ) random variables.

For A ⊆ V , let XA = (Xv, v ∈ A).

Let Xv denote state space of Xv.

Similarly xA = (xv, v ∈ A) ∈ XA = ×v∈AXv.

Abbreviate: A⊥⊥B |S ⇐⇒ XA⊥⊥XB |XS .

Then basic properties of conditional independence imply:

The relation ⊥⊥ on subsets of V is a semigraphoid.

If f(x) > 0 for all x, ⊥⊥ is also a graphoid.

Not all semigraphoids are probabilistically representable.
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Markov properties for semigraphoids

G = (V,E) simple undirected graph; ⊥σ (semi)graphoid
relation. Say ⊥σ satisfies

(P) the pairwise Markov property if

α 6∼ β =⇒ α⊥σ β |V \ {α, β};

(L) the local Markov property if

∀α ∈ V : α⊥σ V \ cl(α) | bd(α);

(G) the global Markov property if

A⊥G B |S =⇒ A⊥σ B |S.
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Structural relations among Markov properties

For any semigraphoid it holds that

(G) =⇒ (L) =⇒ (P)

If ⊥σ satisfies graphoid axioms it further holds that

(P) =⇒ (G)

so that in the graphoid case

(G) ⇐⇒ (L) ⇐⇒ (P).

The latter holds in particular for ⊥⊥ , when f(x) > 0.
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Factorisation and Markov properties

Assume density f w.r.t. product measure on X .

For a ⊆ V , ψa(x) depends on xa only. Distribution of X
factorizes w.r.t. G or satisfies (F) if

f(x) =
∏
a∈A

ψa(x)

where A are complete subsets of G. It then holds that

(F) =⇒ (G)

and further: If f(x) > 0 for all x, (P) =⇒ (F), so then

(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (P).
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