Conditional independence and Markov properties for undirected graphs

Aarhus University, Fall 2003, Lecture 1

Steffen L. Lauritzen, Aalborg University

Conditional independence

Random variables X and Y are *conditionally independent* given the random variable Z if

$$\mathcal{L}(X \mid Y, Z) = \mathcal{L}(X \mid Z).$$

We then write $X \perp \!\!\!\perp Y \mid Z$ (or $X \perp \!\!\!\perp_P Y \mid Z$)

Intuitively:

Knowing Z renders Y irrelevant for predicting X.

Factorisation of densities:

$$\begin{split} X \amalg Y \,|\, Z & \iff \quad f(x,y,z) f(z) = f(x,z) f(y,z) \\ & \iff \quad \exists a,b: f(x,y,z) = a(x,z) b(y,z). \end{split}$$

Fundamental properties

For random variables X, Y, Z, and W it holds

- (C1) if $X \perp\!\!\!\perp Y \mid Z$ then $Y \perp\!\!\!\perp X \mid Z$;
- (C2) if $X \perp\!\!\!\perp Y \mid Z$ and U = g(Y), then $X \perp\!\!\!\perp U \mid Z$;
- (C3) if $X \perp \!\!\!\perp Y \mid Z$ and U = g(Y), then $X \perp \!\!\!\perp Y \mid (Z, U)$;
- (C4) if $X \perp\!\!\!\perp Y \mid Z$ and $X \perp\!\!\!\perp W \mid (Y, Z)$, then $X \perp\!\!\!\perp (Y, W) \mid Z$;

If density w.r.t. product measure f(x, y, z, w) > 0 also

(C5) if
$$X \perp\!\!\!\perp Y \mid (Z, W)$$
 and $X \perp\!\!\!\perp Z \mid (Y, W)$ then $X \perp\!\!\!\perp (Y, Z) \mid W$.

Additional note on (C5)

f(x, y, z, w) > 0 is not necessary for (C5). Enough e.g. that f(y, z, w) > 0 or f(x, z, w) > 0; see proof in Lauritzen (1996).

In discrete and finite case it is even enough that for all w with f(w)>0 the bipartite graphs $\mathcal{G}_w=(\mathcal{Y}\cup\mathcal{Z},E_w)$ defined by

$$y\sim_w z \iff f(y,z,w)>0,$$

are all connected.

Alternatively with X replacing Y.

Is there a simple necessary and sufficient condition?

Graphoid axioms

Ternary relation \perp_{σ} is *graphoid* if for all disjoint subsets A, B, C, and D of V:

- (S1) if $A \perp_{\sigma} B \mid C$ then $B \perp_{\sigma} A \mid C$; (S2) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} D \mid C$; (S3) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} B \mid (C \cup D)$; (S4) if $A \perp_{\sigma} B \mid C$ and $A \perp_{\sigma} D \mid (B \cup C)$, then $A \perp_{\sigma} (B \cup D) \mid C$;
- (S5) if $A \perp_{\sigma} B \mid (C \cup D)$ and $A \perp_{\sigma} C \mid (B \cup D)$ then $A \perp_{\sigma} (B \cup C) \mid D$.

Semigraphoid if only (S1)-(S4) holds.

Separation in undirected graphs

Let $\mathcal{G} = (V, E)$ be finite and simple undirected graph (no self-loops, no multiple edges).

For subsets A, B, S of V, let $A \perp_{\mathcal{G}} B \mid S$ denote that S separates A from B in \mathcal{G} , i.e. that all paths from A to B intersect S.

Fact: The relation $\perp_{\mathcal{G}}$ on subsets of V is a graphoid.

This fact is the reason for choosing the name 'graphoid' for such separation relations.

Probabilistic semigraphoids

V finite set, $X = (X_v, v \in V)$ random variables. For $A \subseteq V$, let $X_A = (X_v, v \in A)$. Let \mathcal{X}_v denote state space of X_v . Similarly $x_A = (x_v, v \in A) \in \mathcal{X}_A = \times_{v \in A} \mathcal{X}_v$. Abbreviate: $A \perp\!\!\!\perp B \mid S \iff X_A \perp\!\!\!\perp X_B \mid X_S$. Then basic properties of conditional independence imply: The relation \perp on subsets of V is a semigraphoid. If f(x) > 0 for all x, $\bot\!\!\!\bot$ is also a graphoid. Not all semigraphoids are probabilistically representable.

Markov properties for semigraphoids

 $\mathcal{G}=(V,E)$ simple undirected graph; \perp_σ (semi)graphoid relation. Say \perp_σ satisfies

(P) the pairwise Markov property if

$$\alpha \not\sim \beta \implies \alpha \perp_{\sigma} \beta \mid V \setminus \{\alpha, \beta\};$$

(L) the local Markov property if
∀α ∈ V : α ⊥_σ V \ cl(α) | bd(α);
(G) the global Markov property if

$$A \perp_{\mathcal{G}} B \mid S \implies A \perp_{\sigma} B \mid S.$$

Structural relations among Markov properties

For any semigraphoid it holds that

$$(\mathsf{G}) \Longrightarrow (\mathsf{L}) \Longrightarrow (\mathsf{P})$$

If \perp_{σ} satisfies graphoid axioms it further holds that

$$(\mathsf{P}) \implies (\mathsf{G})$$

so that in the graphoid case

$$(\mathsf{G})\iff (\mathsf{L})\iff (\mathsf{P}).$$

The latter holds in particular for $\perp \!\!\!\perp$, when f(x) > 0.

Factorisation and Markov properties

Assume density f w.r.t. product measure on \mathcal{X} .

For $a \subseteq V$, $\psi_a(x)$ depends on x_a only. Distribution of X factorizes w.r.t. \mathcal{G} or satisfies (F) if

$$f(x) = \prod_{a \in \mathcal{A}} \psi_a(x)$$

where \mathcal{A} are complete subsets of \mathcal{G} . It then holds that

$$(\mathsf{F}) \implies (\mathsf{G})$$

and further: If f(x) > 0 for all x, (P) \implies (F), so then

$$(\mathsf{F})\iff (\mathsf{G})\iff (\mathsf{L})\iff (\mathsf{P}).$$