Conditional independence and Markov properties for undirected graphs

Aarhus University, Fall 2003, Lecture 1
Steffen L. Lauritzen, Aalborg University

Conditional independence

Random variables X and Y are conditionally independent given the random variable Z if

$$
\mathcal{L}(X \mid Y, Z)=\mathcal{L}(X \mid Z)
$$

We then write $X \Perp Y \mid Z\left(\right.$ or $\left.X \Perp_{P} Y \mid Z\right)$
Intuitively:
Knowing Z renders Y irrelevant for predicting X.
Factorisation of densities:

$$
\begin{aligned}
X \Perp Y \mid Z & \Longleftrightarrow f(x, y, z) f(z)=f(x, z) f(y, z) \\
& \Longleftrightarrow \exists a, b: f(x, y, z)=a(x, z) b(y, z) .
\end{aligned}
$$

Fundamental properties

For random variables X, Y, Z, and W it holds
(C1) if $X \Perp Y \mid Z$ then $Y \Perp X \mid Z$;
(C2) if $X \Perp Y \mid Z$ and $U=g(Y)$, then $X \Perp U \mid Z$;
(C3) if $X \Perp Y \mid Z$ and $U=g(Y)$, then $X \Perp Y \mid(Z, U)$;
(C4) if $X \Perp Y \mid Z$ and $X \Perp W \mid(Y, Z)$, then $X \Perp(Y, W) \mid Z ;$

If density w.r.t. product measure $f(x, y, z, w)>0$ also
(C5) if $X \Perp Y \mid(Z, W)$ and $X \Perp Z \mid(Y, W)$ then $X \Perp(Y, Z) \mid W$.

Additional note on (C5)

$f(x, y, z, w)>0$ is not necessary for (C5). Enough e.g. that $f(y, z, w)>0$ or $f(x, z, w)>0$; see proof in Lauritzen (1996).

In discrete and finite case it is even enough that for all w with $f(w)>0$ the bipartite graphs $\mathcal{G}_{w}=\left(\mathcal{Y} \cup \mathcal{Z}, E_{w}\right)$ defined by

$$
y \sim_{w} z \Longleftrightarrow f(y, z, w)>0
$$

are all connected.
Alternatively with X replacing Y.
Is there a simple necessary and sufficient condition?

Graphoid axioms

Ternary relation \perp_{σ} is graphoid if for all disjoint subsets A, B, C, and D of V :
(S1) if $A \perp_{\sigma} B \mid C$ then $B \perp_{\sigma} A \mid C$;
(S2) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} D \mid C$;
(S3) if $A \perp_{\sigma} B \mid C$ and $D \subseteq B$, then $A \perp_{\sigma} B \mid(C \cup D)$;
(S4) if $A \perp_{\sigma} B \mid C$ and $A \perp_{\sigma} D \mid(B \cup C)$, then

$$
A \perp_{\sigma}(B \cup D) \mid C
$$

(S5) if $A \perp_{\sigma} B \mid(C \cup D)$ and $A \perp_{\sigma} C \mid(B \cup D)$ then $A \perp_{\sigma}(B \cup C) \mid D$.

Semigraphoid if only (S1)-(S4) holds.

Separation in undirected graphs

Let $\mathcal{G}=(V, E)$ be finite and simple undirected graph (no self-loops, no multiple edges).

For subsets A, B, S of V, let $A \perp_{\mathcal{G}} B \mid S$ denote that S separates A from B in \mathcal{G}, i.e. that all paths from A to B intersect S.

Fact: The relation $\perp_{\mathcal{G}}$ on subsets of V is a graphoid.
This fact is the reason for choosing the name 'graphoid' for such separation relations.

Probabilistic semigraphoids

V finite set, $X=\left(X_{v}, v \in V\right)$ random variables.
For $A \subseteq V$, let $X_{A}=\left(X_{v}, v \in A\right)$.
Let \mathcal{X}_{v} denote state space of X_{v}.
Similarly $x_{A}=\left(x_{v}, v \in A\right) \in \mathcal{X}_{A}=\times_{v \in A} \mathcal{X}_{v}$.
Abbreviate: $A \Perp B\left|S \Longleftrightarrow X_{A} \Perp X_{B}\right| X_{S}$.
Then basic properties of conditional independence imply:
The relation \Perp on subsets of V is a semigraphoid.
If $f(x)>0$ for all x, \Perp is also a graphoid.
Not all semigraphoids are probabilistically representable.

Markov properties for semigraphoids

$\mathcal{G}=(V, E)$ simple undirected graph; \perp_{σ} (semi)graphoid relation. Say \perp_{σ} satisfies
(P) the pairwise Markov property if

$$
\alpha \nsim \beta \Longrightarrow \alpha \perp_{\sigma} \beta \mid V \backslash\{\alpha, \beta\} ;
$$

(L) the local Markov property if

$$
\forall \alpha \in V: \alpha \perp_{\sigma} V \backslash \operatorname{cl}(\alpha) \mid \operatorname{bd}(\alpha) ;
$$

(G) the global Markov property if

$$
A \perp_{\mathcal{G}} B\left|S \Longrightarrow A \perp_{\sigma} B\right| S
$$

Structural relations among Markov properties

For any semigraphoid it holds that

$$
(\mathrm{G}) \Longrightarrow(\mathrm{L}) \Longrightarrow(\mathrm{P})
$$

If \perp_{σ} satisfies graphoid axioms it further holds that

$$
(P) \Longrightarrow(G)
$$

so that in the graphoid case

$$
(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{P})
$$

The latter holds in particular for \Perp, when $f(x)>0$.

Factorisation and Markov properties

Assume density f w.r.t. product measure on \mathcal{X}.
For $a \subseteq V, \psi_{a}(x)$ depends on x_{a} only. Distribution of X factorizes w.r.t. \mathcal{G} or satisfies (F) if

$$
f(x)=\prod_{a \in \mathcal{A}} \psi_{a}(x)
$$

where \mathcal{A} are complete subsets of \mathcal{G}. It then holds that

$$
(F) \Longrightarrow(G)
$$

and further: If $f(x)>0$ for all $x,(\mathrm{P}) \Longrightarrow(\mathrm{F})$, so then

$$
(\mathrm{F}) \Longleftrightarrow(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{P})
$$

