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Overview

• Causal interpretation of Bayesian networks

• Structural equation systems

• Assessment of treatment effects

• Intervention diagrams and LIMIDS

• Identifiability of causal effects

• Potential responses and mapping variables

• Discovery of (causal) structure
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Why are Bayesian networks sensible?

Causal interpretation!
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Intervention vs. observation

Causal interpretations are tied to the notion of
conditioning by intervention

P (X = x |Y ← y) = p(x || y), (1)

which in general is quite different from conventional
conditioning or conditioning by observation which is

P (X = x |Y = y) = p(x | y) = p(x, y)/p(y).

A causal interpretation of a Bayesian network involves
giving (1) a simple form.
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Causal Bayesian network

We say that a BN is causal w.r.t. atomic interventions at
B ⊆ V if it holds for any A ⊆ B that

p(x ||x∗A) =
∏

v∈V \A

p(xv |xpa(v))

∣∣∣∣∣∣
xA=x∗

A

For A = ∅ we obtain standard factorisation.

Note that conditional distributions p(xv |xpa(v)) are
stable under interventions which do not involve xv.

Such assumption must be justified in any given context.
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Intervention vs. observation in example
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p(x ||x∗5) = p(x1)p(x2 |x1)p(x3 |x1)p(x4 |x2)
× p(x6 |x3, x

∗
5)p(x7 |x4, x

∗
5, x6)

whereas

p(x |x∗5) ∝ p(x1)p(x2 |x1)p(x3 |x1)p(x4 |x2)
× p(x∗5 |x2, x3)p(x6 |x3, x

∗
5)p(x7 |x4, x

∗
5, x6)
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Structural equation systems

DAG D can also represent structural equation system:

Xv ← gv(xpa(v), Uv), v ∈ V, (2)

where gv are fixed functions and Uv are independent
random disturbances.

Intervention in structural equation system can be made
by replacement , i.e. so that Xv ← x∗v is replacing the
corresponding line in ‘program’ (2).

Corresponds to gv and Uv being unaffected by the
intervention.
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Justification by structural equations

Intervention by replacement in structural equation
system implies D causal for distribution of Xv, v ∈ V .

Occasionally used for justification of CBN.

Ambiguity in choice of gv and Uv makes this problematic.

May take stability of conditional distributions as a
primitive rather than structural equations.

Structural equations more expressive when choice of gv

and Uv can be externally justified.

Nodes Uv, v ∈ A can be adjoined to the network as
additional parents of Xv.

8



Genetic segregation network
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Circles represent alleles. Ovals represent segregation
indicators: 1 for paternal transmission, 0 for maternal.

Relationships deterministic!
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Allele network
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Causal Markov property follows from deterministic
representation as segregation network, equivalent to
structural equation model.
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Assessment of treatment effect
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a - treatment with AZT; l - intermediate response
(possible lung disease); b - treatment with antibiotics; r -
survival after a fixed period.

Predict survival if Xa ← 1 and Xb ← 1, assuming stable
conditional distributions.
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G-computation
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p(1r || 1a, 1b) =
∑
xl

p(1r, xl || 1a, 1b)

=
∑
xl

p(1r |xl, 1a, 1b)p(xl | 1a).

12



More complex interventions

Intervene with strategy σA = {πv, v ∈ A} for choosing
the ‘treatments’ xv, v ∈ A depending on the outcome of
other variables in pa∗(v).

Stability of conditional distributions gives

p(x ||σ) =
∏
v∈A

πv(xv |xpa∗(v))
∏

v∈V \A

p(xv |xpa(v)).

Typically, pa∗(v) 6= pa(v). Graph D∗ = (V,E∗) must be
DAG for intervention to make sense.

Variables in pa∗(v) must be observed before intervention
on Xv is implemented.
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Limited Memory Influence Diagrams

A Limited Memory Influence Diagram (LIMID) is a BN of
chance nodes, decision nodes and utility nodes.

• Chance nodes Γ represented with circles

• Decision nodes ∆ represented with squares.

• Utility nodes Υ represented with diamonds.

• Parents of decision nodes are observed before
decision taken.

Relaxes traditional assumptions of influence diagrams,
where decisions are taken in specified order and
previous decisions and observations remembered.
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Limited Memory Influence Diagram
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h is health

t is test

d is treat or not

t1 observed when d1 is taken. Then t2 is observed and
d2 is taken, etc.
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Intervention diagram

Augment each node v ∈ A where intervention is
contemplated with additional parent variable Fv.

Fv has state space Xv ∪ {φ} and conditional
distributions in the intervention diagram are

p′(xv |xpa(v), fv) =
{

p(xv |xpa(v)) if fv = φ
δxv,x∗

v
if fv = x∗v,

where δxy is Kronecker’s symbol

δxy =
{

1 if x = y
0 otherwise.

Fv is forcing the value of Xv when Fv 6= φ.
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Intervention diagrams

In more general setup, Fv can have parents and
decision policies π can be specified.

Intervention diagrams similar to LIMIDS, but without
utility nodes.

Fv correspond to decision nodes in LIMIDS, only with
special relation to its child v.

When Fv has no parents it holds that

p(x) = p′(x |Fv = φ, v ∈ A),

but also

p(x ||x∗B) = P (X = x |XB ← x∗B)
= P ′(x |Fv = x∗v, v ∈ B,Fv = φ, v ∈ B \A),
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Identifiability of causal effects

Treatment variable t, response r, set of observed
covariates C, unobserved variables U .

When and how can p(Xr ||xt) be calculated from
p(xt, xr, xC), the latter in principle being observable from
data?

Answer can be found by analysing intervention diagram.

Simplest cases known as back-door and front-door
criteria and formulae.
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Back-door criterion and formula

D′ denotes D augmented with Ft.

Assume C ⊇ C0, where C0 satisfies

(BD1) Covariates in C0 are unaffected by an
intervention: C0⊥D′ Ft;

(BD2) Intervention only affects response through the
treatment it chooses: R⊥D′ Ft |C0 ∪ {t}.

Then C identifies the effect of the treatment t on R as

p(xr ||x∗t ) =
∑
xC0

p(xr |xC0 , x
∗
t )p(xC0).
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Confounding
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The unobserved confounder Xu is affecting both
treatment and response.

BD2 is violated; graph to the right reveals that Ft is not
d-separated from r by t.
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Randomisation
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When Xt is randomised, possibly depending on
observed covariate c, confounding is resolved.

Now Ft⊥D′ r | {c, t} and the treatment effect is
identifiable.
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Sufficient covariate
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Alternatively, an observed covariate c can ‘screen away’
the confounding effect on the treatment.

Also here, Ft⊥D′ r | {c, t} and the treatment effect is
identifiable.

Assumption slightly more dubious.
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Front-door formula
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In this case c is the agent through which the treatment
effects the response. Then one can show

p(xr ||x∗t ) =
∑
xc

p(xc |x∗t )
∑
xt

p(xr |xc, xt)p(xt).
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Partial compliance
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a is treatment assigned, t is treatment taken.

The graph to the right reveals that r⊥D′ Fa | {a, t} so the
effect of the treatment assignment is identified.

However, r is not d-separated from Ft by t so the effect
of the treatment itself cannot be identified.
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Mapping variables

In a structural equation system

Xv ← gv(xpa(v), Uv),

each (gv, uv) defines a map ωv : Xpa(v) → Xv as

ωv(xpa(v)) = gv(xpa(v), uv)

Different uv may lead to same map.

If some of pa(v) are unobserved, we may consider them
as part of Uv, just losing the independence among Uv.

Conversely, from mapping variables ωv, we can define g∗v

g∗v(xpa(v), ωv) = ωv(xpa(v)).
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Potential responses

Since now

gv(xpa(v), uv) = g∗v(xpa(v), ωv) = ωv(xpa(v)),

we obtain an observationally equivalent structural
equation system

Xv ← g∗v(Xpa(v),Ωv), v ∈ V,

for random maps Ωv, a system of canonical functional
form.

Mapping variables ωv(xpa(v)) describe the potential
responses, i.e. the values of Xv that would have been
observed, had the parent configuration been xpa(v).
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Partial compliance and mapping variables

�
a t r

u

u - u -

u
@

@
@@R?

�
u

a t r

τ ρ

u - u - u
u
?

u
?

ωτ : Xa → Xt, Xt(xa, ωτ )← ωτ (xa) = gt(xa, xu, Ut)

ωρ : Xt → Xr, Xr(xt, ωρ)← ωρ(xt) = gr(xt, xu, Ur).

Undirected link between τ and ρ indicates possible
dependence.
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Possible maps

Four possible maps of each if all observed variables are
binary:

The maps ωτ may well be called

{always taker, never taker, complier, defier},

so that

always taker (xa) = 1, complier (xa) = xa, etc.

Similarly the four values of ωρ may be called

{always cured, never cured, beneficial, damaging}.
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Causal discovery and structural learning

V variables. DAG D unknown and P given.

Assume P faithful to D:

XA⊥⊥XB | XS ⇐⇒ A⊥D B | S

Most distributions are faithful

Find D matching conditional independences of P .

D and D′ are Markov equivalent if the separation
relations ⊥D and ⊥D′ are identical.

D can only be determined up to Markov equivalence.
Only “causal” aspect is causal motivation for looking for
DAGs.
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Markov equivalence

D and D′ are equivalent if and only if:

1. D and D′ have same skeleton (ignoring directions)

2. D and D′ have same unmarried parents

so
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Constraint-based search

Step 1: Identify skeleton, using that, for a faithful
distribution

u 6∼ v ⇐⇒ ∃S ⊆ V \ {u, v} : Xu⊥⊥Xv | XS .

Begin with complete graph and check first for S = ∅
and remove edges when independence holds.
Then continue for increasing cardinality of S.

PC-algorithm exploits that only S with S ⊆ ne(u) or
S ⊆ ne(v) needs checking, where ne refers to
current skeleton graph.

Step 2: Identify directions to be consistent with
independence relations found in Step 1.
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Exact properties of PC-algorithm

If P is faithful to DAG D, PC-algorithm finds D′
equivalent to D.

It uses N independence checks where N is at most

N ≤ 2
(
|V |
2

) d∑
i=0

(
|V | − 1

i

)
≤ |V |

d+1

(d− 1)!
,

where d is the maximal degree of any vertex in D.

So worst case complexity is exponential, but algorithm
fast for sparse graphs.
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Equivalence class searches

Searches directly in equivalence classes of DAGS.

Define score function σ(P,D), measuring the adequacy
of D for P with the property that

D ≡ D′ =⇒ σ(P,D) = σ(P,D′).

Typically the score function will penalise D with
unnecessary many links.

Equivalence class with maximal score is sought.
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Greedy equivalence class search

1. Initialize with empty DAG

2. Repeatedly search among equivalence classes
with a single additional edge and go to class with
highest score - until no improvement.

3. Repeatedly search among equivalence classes
with a single edge less and move to one with
highest score - until no improvement.

For suitable score functions, this algorithm identifies
correct equivalence class for P . (Chickering 2002)
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Data uncertainty and structural learning

Situation less clear if P is not known, but estimated:

Constraint-based: Independence checks may
randomly give errors.

Algorithms more robust than PC exist.

Most checks are made with separation set S small,
so ‘power’ high.

Asymptotically correct if e.g. marginal BIC used in
checks.

Greedy equivalence search: Asymptotically correct if
using BIC or fully Bayesian approach.
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Latent variables and selection

More serious that one would rarely expect all causally
relevant variables to be measured. Selection effects are
also an issue.

More relevant to assume data obtained from P by
marginalisation to subset V and conditioning with subset
C so W = V ∪ U ∪ C, data represents PC

V , where P is
faithful to some DAG D.

Graphs that describe independence relations in such
cases are Maximal Ancestral Graphs (Richardson and
Spirtes 2002)

Constraint-based methods for identifying MAGs exist.

Bayesian approach seems out of hand.
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