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Bayesian inference

Parameter θ, data X = x, likelihood

L(θ |x) ∝ p(x | θ) =
dPθ(x)
dµ(x)

.

Express knowledge about θ through prior distribution π on
θ. Use also π to denote density of prior w.r.t. some
measure ν.

Inference about θ from x is then represented through
posterior distribution π∗(θ) = p(θ |x). Then, from Bayes’
formula

π∗(θ) = p(x | θ)π(θ)/p(x) ∝ L(θ |x)π(θ)

so the likelihood function is equal to the density of the
posterior w.r.t. the prior modulo a constant.
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Bayesian graphical models

Represent statistical models as Bayesian networks with
parameters included as nodes, i.e. for expressions as

p(xv |xpa(v), θv)

include θv as additional parent of v.

Then Bayesian inference about θ can in principle be
calculated by probability propagation as in general Bayesian
networks.

This is true for θv discrete.

For θ continuous, we must develop other computational
techniques.
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Bernoulli experiments

Data X1 = x1, . . . , Xn = xn independent and Bernoulli
distributed with parameter θ, i.e.

P (Xi = 1 | θ) = 1− P (Xi = 0) = θ.

Represent as a Bayesian network with θ as only parent to
all nodes xi, i = 1, . . . , n. Use a beta prior:

π(θ | a, b) ∝ θa−1(1− θ)b−1.

If we let x =
∑
xi, we get the posterior:

π∗(θ) ∝ θx(1− θ)n−xθa−1(1− θ)b−1

= θx+a−1(1− θ)n−x+b−1

So the posterior is also beta with parameters
(a+ x, b+ n− x).
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Conjugate families

A family P of distributions on Θ is said to be conjugate
under sampling from x if

π ∈ P =⇒ π∗ ∈ P.

The family of beta distributions is conjugate under
Bernoulli sampling.

If the family of priors is parametrised:

P = {Pα, α ∈ A}

we sometimes say that α is a hyperparameter. Then,
Bayesian inference can be made by just updating
hyperparameters. Terminology of hyperparameter breaks
down in complex models.
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Conjugate exponential families

For a k-dimensional exponential family

p(x | θ) = b(x)eθ
>t(x)−ψ(θ)

the standard conjugate family is given as

π(θ | a, κ) ∝ eθ
>a−κψ(θ)

for (a, κ) ∈ A ⊆ Rk ×R+, where A is determined so that
the normalisation constant is finite.

Posterior updating from (x1, . . . , xn) with t =
∑
i t(xi) is

then made as (a∗, κ∗) = (a+ t, κ+ n).

The family of Beta distributions is a standard conjugate
family.
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Markov chain Monte Carlo

When exact computation is infeasible, Markov chain Monte
Carlo (MCMC) methods are used.

An MCMC method for the target distribution π∗ on
X = XV constructs a Markov chain X0, X1, . . . , Xk, . . .
with π∗ as equilibrium distribution.

For the method to be useful, π∗ must be the unique
equilibrium, and the Markov chain must be ergodic so that
for all relevant A

π∗(A) = lim
n→∞

π∗n(A) = lim
n→∞

1
n

m+n∑
i=m+1

χA(Xi)

where χA is the indicator function of the set A.
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Geometric ergodicity

Using simulations from Markov chain constructed, we
estimate expectations as averages:

ḡ =
∫
X
g(x) dπ∗(x) ≈ ḡn =

1
n

m+n∑
i=m+1

g(xi).

The values x0, . . . , xm are discarded and m is referred to as
length of the burn-in period .

If the Markov chain is geometrically ergodic , i.e.

||π∗ − L(Xn |x0)||totvar ≤ c(x0)ψn for some ψ < 1

and
∫
g2 dπ∗ <∞, there is also a central limit theorem so

ḡn
a∼ N (ḡ, σ2

g/n).
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The standard Gibbs sampler

A simple MCMC method is made as follows.

1. Enumerate V = {1, 2, . . . , |V |}

2. choose starting value x0 = x0
1, . . . , x

0
|V |.

3. Update now x0 to x1 by replacing x0
i with x1

i for
i = 1, . . . , |V | , where x1

i is chosen from ‘the full
conditionals’

π∗(Xi |x1
1, . . . , x

1
i−1, x

0
i+1, . . . x

0
|V |).

4. Continue similarly to update xk to xk+1 and so on.
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Properties of Gibbs sampler

With positive joint target density π∗(x) > 0, the Gibbs
sampler Markov chain is ergodic with π∗ as the unique
equilibrium distribution.

In this case the distribution of X(n) converges to π∗ for n
tending to infinity.

Geometric ergodicity is not generally satisfied and a
generally applicable condition for this to hold is not known
(to me at least).
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Full conditional distributions

For a directed graphical model, the density of full
conditional distributions are:

f(xi |xV \i) ∝
∏
v∈V

f(xv |xpa(v))

∝ f(xi |xpa(i))
∏

v∈ch(i)

f(xv |xpa(v))

= f(xi |xbl(i)),

x where bl(i) is the Markov blanket of node i:

bl(i) = pa(i) ∪
{
∪v∈ch(i) pa(v) \ {i}

}
= nem(i)

where nem(i) are the neighbours of i in the moral graph.
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Envelope sampling

In many cases, the conditional distributions further simplify
(by local conjugacy). If not, there are many ways of
sampling from a general density f(x) which is known up to
a proportionality factor, i.e. f(x) ∝ h(x).

One is using an envelope g(x) ≥ h(x), where g(x) is a
known density and then performing rejection sampling as
follows:

1. Choose X = x from distribution with density g

2. Choose U = u uniform on the unit interval.

3. If u > g(x)/h(x), then reject x and repeat step 1,
else return x.
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Metropolis within Gibbs

If no envelope is known, an alternative is to use one step of
a Metropolis–Hastings sampler.

Here g is known density, f ∝ h and x is a current value (of
xi during the Gibbs updating).x

1. Choose Y = y from distribution with density g

2. Choose U = u uniform on the unit interval.

3. If u > min{1, g(x)h(y)g(y)h(x)}, then keep x, else replace x

with y.

Note that here g only needs to be known up to a constant
factor.
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