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Bayesian inference

Parameter 6, data X = z, likelihood

dPy(x)

dp(z)

Express knowledge about 6 through prior distribution 7 on

0. Use also 7 to denote density of prior w.r.t. some
measure v.

L0 @) o< p(x] 0) =

Inference about 6 from x is then represented through
posterior distribution 7* () = p(f | ). Then, from Bayes’
formula

m(0) = p(a [0)m(6)/p(x) o< L(0]2)m(0)

so the likelihood function is equal to the density of the
posterior w.r.t. the prior modulo a constant.



Represent statistical models as Bayesian networks with

parameters included as nodes, i.e. for expressions as
p(-r’u | Tpa(v)s ev)

include 0, as additional parent of v.

Then Bayesian inference about 6 can in principle be
calculated by probability propagation as in general Bayesian
networks.

This is true for 6, discrete.

For 6 continuous, we must develop other computational
techniques.



Data X; = x1,...,X,, = x,, independent and Bernoulli
distributed with parameter @, i.e.

P(X;=1|6)=1—-P(X;=0)=6.
Represent as a Bayesian network with 6 as only parent to
all nodes z;,i =1,...,n. Use a beta prior:
7(0]a,b) o ¢ 1(1 — )L,
If we let = " x;, we get the posterior:
7)) o< (1 —0)" (1 — )t
_ 0x+a—1(1 _ 9)71—x+b—1

So the posterior is also beta with parameters
(a+z,b+n—ux).



A family P of distributions on O is said to be conjugate
under sampling from z if

TeP = 7" e€P.

The family of beta distributions is conjugate under
Bernoulli sampling.

If the family of priors is parametrised:
P={P,,ac A}

we sometimes say that « is a hyperparameter. Then,
Bayesian inference can be made by just updating
hyperparameters. Terminology of hyperparameter breaks
down in complex models.



For a k-dimensional exponential family
plx|0) = ba)e’ 1@V

the standard conjugate family is given as

(0| a, k) x ef " a=ri(6)

for (a,k) € A C R* x Ry, where A is determined so that
the normalisation constant is finite.

Posterior updating from (x1,...,z,) with t =, t(x;) is
then made as (a*,k*) = (a + ¢,k + n).

The family of Beta distributions is a standard conjugate
family.



When exact computation is infeasible, Markov chain Monte
Carlo (MCMC) methods are used.

An MCMC method for the target distribution 7 on
X = Xy constructs a Markov chain X°, X1 .. X% .
with 7* as equilibrium distribution.

For the method to be useful, 7* must be the unique
equilibrium, and the Markov chain must be ergodic so that
for all relevant A

m—+n )
™ (4) = fm i (4) = Jim D3 xa(X)
1=m-+1

where x 4 is the indicator function of the set A.



Using simulations from Markov chain constructed, we
estimate expectations as averages:

1 m—+n
Qz/gwmﬁﬂ%%ZHE:ﬂw-
X 1=m-+1
The values x°, ..., 2™ are discarded and m is referred to as

length of the burn-in period.
If the Markov chain is geometrically ergodic, i.e.
|7 — L(X™ | 2°)[|totvar < c(z)Y™ for some 1h < 1

and [ g% dr* < oo, there is also a central limit theorem so

Gn ~N(g,0./n).



A simple MCMC method is made as follows.

1. Enumerate V ={1,2,...,|V|}

0

; _ .0 0
2. choose starting value z° = LYy Ty

3. Update now x° to ! by replacing z¥ with z} for
i=1,...,|V], where z} is chosen from ‘the full
conditionals’

W*(Xi|x%,...,x%_l,x?_,_l,...x?w).

4. Continue similarly to update z* to z**! and so on.



With positive joint target density 7*(z) > 0, the Gibbs
sampler Markov chain is ergodic with 7* as the unique
equilibrium distribution.

In this case the distribution of X (n) converges to 7* for n
tending to infinity.

Geometric ergodicity is not generally satisfied and a
generally applicable condition for this to hold is not known
(to me at least).



For a directed graphical model, the density of full
conditional distributions are:

flailzvg) o [ F@olzpag)

veV
o8 f xz ‘xpa( ) H f xv ‘xpa(v))
vech(i)
= f(l‘z' \l’bl(i))7

x where bl(4) is the Markov blanket of node i:

bl(l) = Ppa U {UUECh (%) pa \ {Z}} =ne™

where ne™ (i) are the neighbours of i in the moral graph.



In many cases, the conditional distributions further simplify
(by local conjugacy). If not, there are many ways of
sampling from a general density f(x) which is known up to
a proportionality factor, i.e. f(z)  h(x).

One is using an envelope g(x) > h(z), where g(x) is a
known density and then performing rejection sampling as
follows:

1. Choose X = x from distribution with density g

2. Choose U = u uniform on the unit interval.

3. If u> g(z)/h(x), then reject = and repeat step 1,
else return x.



If no envelope is known, an alternative is to use one step of
a Metropolis—Hastings sampler.

Here g is known density, f o< h and x is a current value (of
x; during the Gibbs updating).x

1. Choose Y = y from distribution with density g

2. Choose U = u uniform on the unit interval.

3. If u> min{1, Z20WY then keep z, else replace z
g(y)h(z)

with y.

Note that here g only needs to be known up to a constant
factor.



