| MimModels {mimR} | R Documentation |
...........
mim(mimFormula, data, fit=TRUE, marginal=data$name)
mimFormula |
A model formula following the MIM syntax. Long variable names are allowed however. See 'details'. The formula can be given either with a tilde or as a string |
fit |
Should the model be fitted if possible |
data |
A gmData object |
marginal |
Can be used for specifying only a subset of the variables in connection with a main effects, a saturated and a homogeneous saturated model |
A mim.formula can be "Sex+Drug/Sex:W1+Drug:W1+Sex:W2+Drug:W2/Sex:W1:W2+Drug:W1:W2". A mimFormula can also be "." (the main effects (the independence) model), ".." (the saturated model) or "..h" (the homogeneous saturated model). See 'examples'.
A mim model object
Before using mimR, make sure that the MIM program is runnning.
Søren Højsgaard, sorenh@agrsci.dk
David Edwards, An Introduction to Graphical Modelling, Springer Verlag, 2002
# Create som models (no data needed!)
gmd.rats.nodata <- gmData(c("Sex","Drug","W1","W2"),
factor=c(2,3,FALSE,FALSE),
vallabels=list("Sex"=c("M","F"), "Drug"=c("D1","D2","D3")))
m12 <- mim("Sex:Drug/Sex:Drug:W1+Sex:Drug:W2/W1:W2", data=gmd.rats.nodata)
summary(m12)
m.main <- mim(".", data=gmd.rats.nodata)
m.sat <- mim("..", data=gmd.rats.nodata)
m.hsat <- mim("..h", data=gmd.rats.nodata)
summary(m.main);
summary(m.sat);
summary(m.hsat)
# Next we need some data to work with
data(rats)
gmd.rats <- as.gmData(rats)
vallabels(gmd.rats)
observations(gmd.rats)
m1 <- mim("Sex:Drug/Sex:Drug:W1+Sex:Drug:W2/W1:W2", data=gmd.rats)
m.main <- mim(".", data=gmd.rats, marginal=c("Sex", "Drug", "W1"))
m.sat <- mim("..", data=gmd.rats, marginal=c("Sex", "Drug", "W1"))
m.hsat <- mim("..h", data=gmd.rats, marginal=c("Sex", "Drug", "W1"))
m1f <- fit(m1)
summary(m1f)
m.main <- fit(mim(".", data=gmd.rats))
m.sat <- fit(mim("..", data=gmd.rats))
m.hsat <- fit(mim("..h", data=gmd.rats))
summary(m.main);
summary(m.sat);
summary(m.hsat)
# To generate an nth order hierarchical log-linear model for discrete
# data you can do
data(HairEyeColor)
mim(nthOrderModel(names(dimnames(HairEyeColor)),order=2),data=as.gmData(HairEyeColor))