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Three-way tables

Admissions to Berkeley by department

Department Sex Whether admitted
Yes No

I Male 512 313
Female 89 19

II Male 353 207
Female 17 8

III Male 120 205
Female 202 391

IV Male 138 279
Female 131 244

V Male 53 138
Female 94 299

VI Male 22 351
Female 24 317

Here are three variables A: Admitted?, S: Sex, and D:
Department.
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Conditional independence

For three variables it is of interest to see whether
independence holds for fixed value of one of them, e.g. is
the admission independent of sex for every department
separately? We denote this as A⊥⊥S |D and graphically asu u u

A D S

Algebraically, this corresponds to the relations

pijk = pi+ | kp+j | kp++k =
pi+kp+jk

p++k
.
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Marginal and conditional independence

Note that there the two conditions

A⊥⊥S, A⊥⊥S |D

are very different and will typically not both hold unless we
either have A⊥⊥ (D,S) or (A,D)⊥⊥S, i.e. if one of the
variables are completely independent of both of the others.

This fact is a simple form of what is known as
Yule–Simpson paradox.

It can be much worse than this:

A positive conditional association can turn into a negative
marginal association and vice-versa.
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Admissions revisited

Admissions to Berkeley

Sex Whether admitted
Yes No

Male 1198 1493
Female 557 1278

Note this marginal table shows much lower admission rates
for females.

Considering the departments separately, there is only a
difference for department I, and it is the other way around...
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Florida murderers

Sentences in 4863 murder cases in Florida over the six years
1973-78

Sentence
Murderer Death Other
Black 59 2547
White 72 2185

The table shows a greater proportion of white murderers
receiving death sentence than black (3.2% vs. 2.3%),
although the difference is not big, the picture seems clear.
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Controlling for colour of victim

Sentence
Victim Murderer Death Other
Black Black 11 2309

White 0 111
White Black 48 238

White 72 2074

Now the table for given colour of victim shows a very
different picture. In particular, note that 111 white
murderers killed black victims and none were sentenced to
death.
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Graphical models
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For several variables, complex systems of conditional
independence can be described by undirected graphs.

Then a set of variables A is conditionally independent of
set B, given the values of a set of variables C if C
separates A from B.
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Conditional independence

Random variables X and Y are conditionally independent
given the random variable Z if

L(X |Y,Z) = L(X |Z).

We then write X ⊥⊥Y |Z

Intuitively:

Knowing Z renders Y irrelevant for predicting X.

Conditional independence can be expressed through
Factorization of probabilities:

X ⊥⊥Y |Z ⇐⇒ pxyzp++z = px+zp+yz

⇐⇒ ∃a, b : pxyz = axzbyz.
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Graphical models
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For several variables, complex systems of conditional
independence can be described by undirected graphs.

A set of variables A is conditionally independent of set B,
given the values of a set of variables C if C separates A
from B.
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Global Markov property and factorization

Formally we say for a given graph G that a distribution
obeys the global Markov property (G) if

S separates A from B implies A⊥⊥B |S.

A distribution factorizes w.r.t. G if

p(x) =
∏

a complete

ψa(x)

where ψa(x) depends on x through xa = (xv)v∈a only.

It can be shown that a positive probability distribution is
globally Markov w.r.t. a graph if and only if it factorizes as
above.
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Global Markov property
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To find conditional independence relations, one should look
for separating sets, such as {2, 3}, {4, 5, 6}, or {2, 5, 6}

For example, it follows that 1⊥⊥ 7 | {2, 5, 6} and
2⊥⊥ 6 | {3, 4, 5}.

12



Factorization

3 6

1 5 7

2 4

u u
u u u

u u
@

@@

�
��

@
@@

@
@@

@
@@

�
��

�
��

A probability distribution factorizes w.r.t. this graph iff it
can be written in the form

p(x) = ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)ψ25(x2, x5)
×ψ47(x4, x7)ψ356(x3, x5, x6)ψ567(x5, x6, x7)
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Log–linear models

A = {a1, . . . , aK} denotes a set of (pairwise incomparable)
subsets of ai ⊆ V .

A probability distribution p (or function) factorizes w.r.t. A
if it can be written as a product of terms where each only
depend on variables in the same subset of A, i.e. as

p(x) =
∏
a∈A

ψa(x)

where ψa(x) depends on x through xa = (xv)v∈a only.

The set of distributions which factorize w.r.t. A is the
log–linear model generated by A.

A is the generating class of the log–linear model.
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If the distribution factorizes without being everywhere
positive, it will also satisfy all the Markov properties, but
not the other way around.

Formally, we define the graphical model with graph
G = (V,E) to be the log-linear model with A = C, where C
are the cliques (i.e. maximal complete subsets) of the
graph.
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Example

Consider a three way contingency table, where e.g. mijk

denotes the mean of the counts Nijk in the cell (i, j, k)
which has then been expanded as e.g.

logmijk = αi + βj + γk (1)

or
logmijk = αij + βjk (2)

or
logmijk = αij + βjk + γik, (3)

or (with redundancy)

logmijk = γ + δi + φj + ηk + αij + βjk + γik,
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The additive terms in the expansion are known as
interaction terms of order |a| − 1 or |a|-factor interactions.

Interaction terms of 0th order are called main effects.
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Dependence graph of log–linear model

For any generating class A we can construct the
dependence graph of the corresponding log–linear model.

This is determined by the relation

α ∼ β ⇐⇒ ∃a ∈ A : α, β ∈ a.

Then any probability distribution which factorizes w.r.t. A
also satisfies the global Markov property w.r.t. G(A).

This is by default the graph displayed in MIM.
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Independence

The log–linear model specified by (1) is known as the main
effects model.

It has generating class consisting of singletons only
A = {{I}, {J}, {K}}. It has dependence graph

J

I K

t
t t

Thus it corresponds to complete independence.
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Conditional independence

The log–linear model specified by (2) has no interaction
between I and K.

It has generating class A = {{I, J}, {J,K}} and
dependence graph

J
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Thus it corresponds to the conditional independence
I ⊥⊥K | J .
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No interaction of second order

The log–linear model specified by (3) has no second-order
interaction. It has generating class
A = {{I, J}, {J,K}, {I,K}} and its dependence graph
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is the complete graph. Thus it has no conditional
independence interpretation.
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Interaction graphs
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The interaction graph of A is the graph with vertices
V ∪ A and edges define by

α ∼ a ⇐⇒ α ∈ a.

Using this graph all log–linear models admit a simple visual
representation. Can be requested in MIM.
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Likelihood function

The likelihood function for an unknown p can be expressed
as

L(p) =
n∏

ν=1

p(xν) =
∏
x∈X

p(x)n(x).

In contingency table form the data follow a multinomial
distribution

P{N(x) = n(x), x ∈ X} =
n!∏

x∈X n(x)!

∏
x∈X

p(x)n(x)

but this only affects the likelihood function by a constant
factor.
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It can be shown that in log-linear models, the likelihood
function has at most one maximum. When zero-values are
allowed, it always has one.

MIM uses an algorithm for fitting known as Iterative
Proportional Fitting which, if properly implemented, also
works in the case where probabilities are allowed to be zero
(sparse tables).

Also implemented e.g. in R in loglin with front end
loglm in MASS.

An alternative is to “pretend” that counts are independent
and Poisson distributed and use glm. However, the
algorithm used there does not work when estimated cell
probabilities are zero.
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