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Types of longitudinal data

There are many cases where the ‘standard model’ from last
lecture is inadequate, i.e. when the data are not well
described as the sum of three components: a general trend,
a (stationary) component with serial correlation, and
random noise.

This is for example true for such cases as

• Biokinetics: A substance is introduced into a person
and the concentration level of one or more
components is measured at selected time intervals
over a period.

The ‘substance’ can e.g. be one or more specific
drugs or types of food.
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The purpose of such analysis may be to understand
the shape of the curve, to get a grip of the duration
of a transient phenomenon, or e.g. the variation in
the maximally achieved value.

• Cucumber plants are grown in greenhouses. One
would like to know how different
watering/fertilization/treatment schemes affect the
growth. Cucumbers are picked daily from each plant
and recorded.

Cucumbers have a season. It takes a while before
they develop, then they give a lot of cucumbers for a
while, and then stop. The farmer would like to have a
lot of cucumbers when others don’t, so the price is
high.
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• Event history data follow individuals over time and
record when events happen.

• Flowers under different conditions. They develop
buds, the buds become flowers, and then die.
Different treatments make the plants develop
differently.

Plants that have lots of buds and some flowers are
selling best.

This can be seen as a type of event history data.

• Panel data follow a group of individuals (panel
members) over time. From time to time the members
are filling questionnaires, for example on their
political or consumer preferences.
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• Growth models. It is not always reasonable to assume
this to be trend plus stationary error. Typically
growth can be high in some periods and low in
others, with some random variation.

• Speech analysis. Frequency properties of speech is
recorded at dense discrete time points (millisecond
intervals). One is interested in describing the
behaviour as different phonemes are pronounced, e.g.
for automatic speech recognition and -understanding.
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Descriptive methods

Transform an observed curve to a some features, e.g.

• The area A under the curve, representing the total
amount of something;

• The maximal value M reached of the curve;

• The total duration D of a signal, i.e. the time spent
above a certain level.

• A set of Fourier- or wavelet coefficients F ;

• etc...

Now use your favourite (multivariate) technique to analyse
(part of) the vector A,M,D,F .
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Differential equations

If the phenomenon observed is well understood, there might
be a relevant differential equation explaining the main
features of the observations.

An example from insulin kinetics postulates the following
relation between the plasma glucose concentration G(t),
insulin concentration I(t), and the insulin’s effect on the
net glucose disappearance X(t):

Ġ(t) = −p1{G(t)−Gb} −X(t)G(t), G(0) = 0,

Ẋ(t) = −p2X(t) + p3{I(t)− Ib}, X(0) = 0,

İ(t) = −n{I(t)− Ib}+ γ{G(t)− h}+t, I(0) = 0.

This is known as Bergman’s minimal model .
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The parameters are individual and to be determined from
observations. The important quantities are

• Insulin sensitivity: SI = p1/p2;

• Glucose effectiveness: SG = p1;

• Pancreatic responsiveness: (φ1, φ2) where
φ1 = (Imax − Ib)/{n(G0 −Gb)}, φ2 = γ × 104.

This is generally difficult, as only G(t), I(t) can be
observed, and only at discrete time points. Using graphical
models and MCMC in the right way, it is possible.

This general area is known as PK/PD for
pharmaco-kinetics/-dynamics.

8



Dynamic models

These models, also known as state-space models (SSM) are
similar in spirit to differential equation models.

Typically they have two levels, but sometimes more. One
level describes the development of an unobserved (hidden)
state Xt, typically using a Markov model with e.g.

L(Xt+1 |Xs = xs, s ≤ t, θ) ∼ N{At(θ)xt, σ
2
t (θ)}

and an observational model for Yt with

L(Yt |X, η) = N{Bt(η)xt, τ
2(η)},

where Yt, t = 1, . . . , T are observed.
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Parameters are then estimated by using a variant of the EM
algorithm. The E-step can be performed elegantly using a
recursive algorithm known as the Kalman Filter .

MCMC is also a viable alternative and a hot research topic
is that of particle filters which can be seen as MCMC
variants of the Kalman filter.

Generalisations include replacing each of the models above
with generalised linear models.

For example, in the cucumber example it is natural to
consider Poisson model for the observed number of
cucumbers on a plant.

In speech analysis, Y is typically a feature vector of the
signal and the state space equation should depend on what
the individual is saying. Hence another level is typically
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introduced with Zt discrete taking values in possible
phonemes and and following a Markov model so that

P (Zt+1 = zt+1 |Zs = zs, s ≤ t) = q(zt+1 | zt, θ),

and

L(Xt+1 | (Xt = xs, Zt = zs), s ≤ t, θ) ∼
N{At(θ, zt)xt, σ

2
t (θ, zt)}.

and
L(Yt |X, η) = N{Bt(η)xt, τ

2(η)},
where Yt, t = 1, . . . , T are observed.

Such models are switching state space models (SSM).

If the middle level is missing, it is also called a hidden
Markov model (HMM).
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