
Introduction to categorical data and
conditional independence

MSc Further Statistical Methods, Lecture 1
Hilary Term 2007

Steffen Lauritzen, University of Oxford; January 17, 2007

1Categorical Data

Examples of categorical variables

• Sex : Male, Female;

• Colour of Hair : Blond, Red, Neutral, Dark;

• Degree of Satisfaction with work: Low, Medium, High

• Yearly income: Below 10,000, 10,001-20,000,
20,001-40,000, above 40,000;

Some are nominal , others ordinal . They have different
number of states.

2Contingency Table

Data often presented in the form of a contingency table or
cross-classification:

Sex
Admitted Male Female
Yes 1198 557
No 1493 1278

This is a two-way table (or two-way classification) with
categorical variables A: Admitted? and S: Sex. In this case
it is a 2× 2-table.

The numerical entries are cell counts nij , the number of
cases in the category A = i and S = j. The total number
of cases is n =

∑
ij nij .

3Data in list form

Data can also appear in the form of a list of cases:

case Admitted Sex
1 Yes Male
2 Yes Female
3 No Male
4 Yes Male
...

...
...

The contingency table is then formed from the list of cases
by counting the number of cases in each cell of the table.

4

Multinomial sampling model

The standard sampling model for data of this form specifies
that cases are independent and pij = P (A = i, S = j) is
the probability that a given case belongs to cell ij.

The cell counts then follow a multinomial distribution

P (Nij = nij , i = 1, . . . I, j = 1, . . . J) =
n!∏

ij nij !

∏
ij

p
nij

ij .

The expected cell counts are

mij = E(Nij) = npij .

Other sampling schemes fixes certain marginal totals or
have a Poisson total N , leading to cell counts being
independent Poisson.

5Hypothesis of independence

A typical hypothesis of interest is that of independence
between the two variables, i.e. that

pij = P (A = i, S = j) = P (A = i)P (S = j) = pi+p+j
,

where

pi+ = P (A = i) =
∑

j

pij , p+j = P (S = j) =
∑

i

pij

are the marginal probabilities.

6Likelihood ratio test

Without assuming independence, the MLE of the cell
probabilities and expected cell counts are

p̂ij = nij/n, m̂ij = np̂ij = nij .

Similarly, assuming independence, the MLE becomes

ˆ̂pij = ni+n+j/n2, ˆ̂mij = n ˆ̂pij = ni+n+j/n,

where
ni+ =

∑
j

nij , n+j =
∑

i

nij

7are the marginal counts. Hence we get

G2 = −2 log Λ = −2 log
L(ˆ̂p)
L(p̂)

= 2
∑
ij

nij log
p̂ij

ˆ̂pij

= 2
∑
ij

nij log
m̂ij

ˆ̂mij

= 2
∑
ij

nij log
nij

ˆ̂mij

= 2
∑

OBS log
OBS

EXP
,

Here OBS refers to the observed cell counts and EXP to
the expected cell counts under the hypothesis.

It can be shown that for large cell counts, G2 is
approximately χ2-distributed with degrees of freedom equal
to (I − 1)(J − 1) which is equal to 1 in this case.
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Pearson’s χ2 statistic

An alternative to the LRT statistic or deviance G2, one can
use the statistic

χ2 =
∑ (OBS− EXP)2

EXP
,

which is an approximation to the deviance and also has
approximately the same distribution, under the null
hypothesis, for large cell counts.

For the approximations to be valid, it is a common rule of
thumb for both G2 and χ2 that the expected cell counts
ˆ̂mij must be larger than 5.

This condition is often not satisfied, in particular in
multi-way tables with many variables.

9Sparse tables

Data on oral lesions by region in India:

Kerala Gujarat Andhra
Labial Mucosa 0 1 0
Buccal Mucosa 8 1 8
Commisure 0 1 0
Gingiva 0 0 1
Hard Palate 0 1 0
Soft palate 0 1 0
Tongue 0 1 1
Floor of Mouth 1 0 1
Alveolar Ridge 1 0 1

10Exact testing methods

In sparse tables such as the data on oral lesions, asymptotic
results can be very misleading.

Instead one can exploit that, under the hypothesis of
independence, the marginals are sufficient and the
conditional distribution of the counts {Nij} is:

P {(nij) | (ni+), (n+j)} =

∏I
i=1 ni+!

∏J
j=1 n+j !

n!
∏I

i=1

∏J
j=1 nij !

. (1)

Fisher’s exact test rejects for small values of the observed
value of P {(nij) | (ni+), (n+j)} and evaluates the p-value
in this distribution as well.

11Monte-Carlo testing

In principle, exact testing requires enumeration of all
possible tables with a given margin.

However, there is an efficient algorithm due to Patefield
(1981) which generates samples {ñij}k, k = 1, . . . K from
the distribution (1).

By choosing K large, the correct p-value for any test
statistic T can be calculated to any degree of accuracy as

p̃ =
|{k : t̃k ≥ tobs}|

K
,

where t̃k is calculated from the table {ñij}k.

This may well be preferable to using asymptotic results.
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Three-way tables

Admissions to Berkeley by department

Department Sex Whether admitted
Yes No

I Male 512 313
Female 89 19

II Male 353 207
Female 17 8

III Male 120 205
Female 202 391

IV Male 138 279
Female 131 244

V Male 53 138
Female 94 299

VI Male 22 351
Female 24 317

Here are three variables A: Admitted?, S: Sex, and D:
Department.

13Conditional independence

For three variables it is of interest to see whether
independence holds for fixed value of one of them, e.g. is
the admission independent of sex for every department
separately? We denote this as A⊥⊥S |D and graphically asu u u

A D S

Algebraically, this corresponds to the relations

pijk = pi+ | kp+j | kp++k =
pi+kp+jk

p++k
.

14Marginal and conditional independence

Note that there the two conditions

A⊥⊥S, A⊥⊥S |D

are very different and will typically not both hold unless we
either have A⊥⊥ (D,S) or (A,D)⊥⊥S, i.e. if one of the
variables are completely independent of both of the others.

This fact is a simple form of what is known as
Yule–Simpson paradox.

It can be much worse than this:

A positive conditional association can turn into a negative
marginal association and vice-versa.

15Admissions revisited

Admissions to Berkeley

Sex Whether admitted
Yes No

Male 1198 1493
Female 557 1278

Note this marginal table shows much lower admission rates
for females.

Considering the departments separately, there is only a
difference for department I, and it is the other way around...
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Florida murderers

Sentences in 4863 murder cases in Florida over the six years
1973-78

Sentence
Murderer Death Other
Black 59 2547
White 72 2185

The table shows a greater proportion of white murderers
receiving death sentence than black (3.2% vs. 2.3%),
although the difference is not big, the picture seems clear.

17

Controlling for colour of victim

Sentence
Victim Murderer Death Other
Black Black 11 2309

White 0 111
White Black 48 238

White 72 2074

Now the table for given colour of victim shows a very
different picture. In particular, note that 111 white
murderers killed black victims and none were sentenced to
death.
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Graphical and Log-Linear Models

MSc Further Statistical Methods, Lecture 2
Hilary Term 2007

Steffen Lauritzen, University of Oxford; January 18, 2007

1Three-way tables

Admissions to Berkeley by department

Department Sex Whether admitted
Yes No

I Male 512 313
Female 89 19

II Male 353 207
Female 17 8

III Male 120 205
Female 202 391

IV Male 138 279
Female 131 244

V Male 53 138
Female 94 299

VI Male 22 351
Female 24 317

Here are three variables A: Admitted?, S: Sex, and D:
Department.

2Conditional independence

For three variables it is of interest to see whether
independence holds for fixed value of one of them, e.g. is
the admission independent of sex for every department
separately? We denote this as A⊥⊥S |D and graphically asu u u

A D S

Algebraically, this corresponds to the relations

pijk = pi+ | kp+j | kp++k =
pi+kp+jk

p++k
.

3Marginal and conditional independence

Note that there the two conditions

A⊥⊥S, A⊥⊥S |D

are very different and will typically not both hold unless we
either have A⊥⊥ (D,S) or (A,D)⊥⊥S, i.e. if one of the
variables are completely independent of both of the others.

This fact is a simple form of what is known as
Yule–Simpson paradox.

It can be much worse than this:

A positive conditional association can turn into a negative
marginal association and vice-versa.

4

Admissions revisited

Admissions to Berkeley

Sex Whether admitted
Yes No

Male 1198 1493
Female 557 1278

Note this marginal table shows much lower admission rates
for females.

Considering the departments separately, there is only a
difference for department I, and it is the other way around...

5Florida murderers

Sentences in 4863 murder cases in Florida over the six years
1973-78

Sentence
Murderer Death Other
Black 59 2547
White 72 2185

The table shows a greater proportion of white murderers
receiving death sentence than black (3.2% vs. 2.3%),
although the difference is not big, the picture seems clear.

6Controlling for colour of victim

Sentence
Victim Murderer Death Other
Black Black 11 2309

White 0 111
White Black 48 238

White 72 2074

Now the table for given colour of victim shows a very
different picture. In particular, note that 111 white
murderers killed black victims and none were sentenced to
death.

7Graphical models
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For several variables, complex systems of conditional
independence can be described by undirected graphs.

Then a set of variables A is conditionally independent of
set B, given the values of a set of variables C if C
separates A from B.
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Conditional independence

Random variables X and Y are conditionally independent
given the random variable Z if

L(X |Y,Z) = L(X |Z).

We then write X ⊥⊥Y |Z

Intuitively:

Knowing Z renders Y irrelevant for predicting X.

Conditional independence can be expressed through
Factorization of probabilities:

X ⊥⊥Y |Z ⇐⇒ pxyzp++z = px+zp+yz

⇐⇒ ∃a, b : pxyz = axzbyz.

9Graphical models
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For several variables, complex systems of conditional
independence can be described by undirected graphs.

A set of variables A is conditionally independent of set B,
given the values of a set of variables C if C separates A
from B.

10Global Markov property and factorization

Formally we say for a given graph G that a distribution
obeys the global Markov property (G) if

S separates A from B implies A⊥⊥B |S.

A distribution factorizes w.r.t. G if

p(x) =
∏

a complete

ψa(x)

where ψa(x) depends on x through xa = (xv)v∈a only.

It can be shown that a positive probability distribution is
globally Markov w.r.t. a graph if and only if it factorizes as
above.

11Global Markov property
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To find conditional independence relations, one should look
for separating sets, such as {2, 3}, {4, 5, 6}, or {2, 5, 6}

For example, it follows that 1⊥⊥ 7 | {2, 5, 6} and
2⊥⊥ 6 | {3, 4, 5}.
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Factorization
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A probability distribution factorizes w.r.t. this graph iff it
can be written in the form

p(x) = ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)ψ25(x2, x5)
×ψ47(x4, x7)ψ356(x3, x5, x6)ψ567(x5, x6, x7)

13Log–linear models

A = {a1, . . . , aK} denotes a set of (pairwise incomparable)
subsets of ai ⊆ V .

A probability distribution p (or function) factorizes w.r.t. A
if it can be written as a product of terms where each only
depend on variables in the same subset of A, i.e. as

p(x) =
∏
a∈A

ψa(x)

where ψa(x) depends on x through xa = (xv)v∈a only.

The set of distributions which factorize w.r.t. A is the
log–linear model generated by A.

A is the generating class of the log–linear model.

14If the distribution factorizes without being everywhere
positive, it will also satisfy all the Markov properties, but
not the other way around.

Formally, we define the graphical model with graph
G = (V,E) to be the log-linear model with A = C, where C
are the cliques (i.e. maximal complete subsets) of the
graph.

15Example

Consider a three way contingency table, where e.g. mijk

denotes the mean of the counts Nijk in the cell (i, j, k)
which has then been expanded as e.g.

logmijk = αi + βj + γk (1)

or
logmijk = αij + βjk (2)

or
logmijk = αij + βjk + γik, (3)

or (with redundancy)

logmijk = γ + δi + φj + ηk + αij + βjk + γik,
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The additive terms in the expansion are known as
interaction terms of order |a| − 1 or |a|-factor interactions.

Interaction terms of 0th order are called main effects.

17Dependence graph of log–linear model

For any generating class A we can construct the
dependence graph of the corresponding log–linear model.

This is determined by the relation

α ∼ β ⇐⇒ ∃a ∈ A : α, β ∈ a.

Then any probability distribution which factorizes w.r.t. A
also satisfies the global Markov property w.r.t. G(A).

This is by default the graph displayed in MIM.

18Independence

The log–linear model specified by (1) is known as the main
effects model.

It has generating class consisting of singletons only
A = {{I}, {J}, {K}}. It has dependence graph

J

I K

t
t t

Thus it corresponds to complete independence.

19Conditional independence

The log–linear model specified by (2) has no interaction
between I and K.

It has generating class A = {{I, J}, {J,K}} and
dependence graph

J

I K

t
t t
@

@ �
�

Thus it corresponds to the conditional independence
I ⊥⊥K | J .

20

No interaction of second order

The log–linear model specified by (3) has no second-order
interaction. It has generating class
A = {{I, J}, {J,K}, {I,K}} and its dependence graph

J

I K

t
t t
@

@ �
�

is the complete graph. Thus it has no conditional
independence interpretation.

21Interaction graphs
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The interaction graph of A is the graph with vertices
V ∪ A and edges define by

α ∼ a ⇐⇒ α ∈ a.

Using this graph all log–linear models admit a simple visual
representation. Can be requested in MIM.

22Likelihood function

The likelihood function for an unknown p can be expressed
as

L(p) =
n∏

ν=1

p(xν) =
∏
x∈X

p(x)n(x).

In contingency table form the data follow a multinomial
distribution

P{N(x) = n(x), x ∈ X} =
n!∏

x∈X n(x)!

∏
x∈X

p(x)n(x)

but this only affects the likelihood function by a constant
factor.

23It can be shown that in log-linear models, the likelihood
function has at most one maximum. When zero-values are
allowed, it always has one.

MIM uses an algorithm for fitting known as Iterative
Proportional Fitting which, if properly implemented, also
works in the case where probabilities are allowed to be zero
(sparse tables).

Also implemented e.g. in R in loglin with front end
loglm in MASS.

An alternative is to “pretend” that counts are independent
and Poisson distributed and use glm. However, the
algorithm used there does not work when estimated cell
probabilities are zero.
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Measures of association. Ordinal
variables. Symmetric Tables

MSc Further Statistical Methods, Lecture 3
Hilary Term 2007

Steffen Lauritzen, University of Oxford; January 24, 2007

1Measures of association

If (conditional) independence among a pair of variables
does not hold, it becomes of interest to quantify and
describe the dependence.

When variables are nominal, there is no direct analogue of
covariance or correlation and one must use other measures
of association.

We consider the relative risk and the odds-ratio.

For ordinal variables there are analogues of the correlation
coefficient. We shall consider Kruskal’s γ-coefficient.

2Relative risk

Consider 2× 2-table with probabilities

B
A 1 2
1 p11 p12

2 p21 p22

The relative risk (ρ = RR) compares
P (A = 1 |B = 1) = p1 | 1 = p11/(p11 + p21) with
P (A = 1 |B = 2) = p1 | 2 = p12/(p12 + p22):

ρ =
p11

p12

p12 + p22

p11 + p21
.

3Example

The empirical counterpart of the relative risk is

ρ̂ =
n11

n12

n12 + n22

n11 + n21

Sex
Admitted Male Female
Yes 1198 557
No 1493 1278

Here

ρ̂ =
1198
557

557 + 1278
1198 + 1493

= 1.47

so it appears that chances for a male to be admitted is
about 47% higher than those for females.

4

Odds–ratio

The relative risk is an asymmetric measure of association
between A and B. This may sometimes be inconvenient, so
an alternative is the odds-ratio θ.

The (conditional) odds for A = 1 given B = 1 are

ω(A = 1 |B = 1) = ω11 =
P (A = 1 |B = 1)
P (A = 2 |B = 1)

=
p11

p21

and similarly for B = 2. The odds-ratio is thus

θ =
ω11

ω12
=

(p11/p21)
p12/p22

=
p11p22

p12p21
,

which is fully symmetric in A and B and in the labels 1 and
2. Thus it does not change if we relabel the variables or its
states.

5The odds-ratio is also known as the cross-product ratio and
its empirical counterpart is

θ̂ =
n11n22

n12n21
,

which for the admission example gives

θ̂ =
1198× 1278
557× 1493

= 1.84.

One can easily show that

A⊥⊥B ⇐⇒ θ = 1

and a value of θ greater than one corresponds to positive
association (as in the admission example) whereas θ < 1
corresponds to negative association.

6Conditional odds-ratios

More generally, if A and B have more than two states, the
odds-ratio is defined for two pairs of states (i, i∗) and
(j, j∗) as

θii∗jj∗ =
pijpi∗j∗

pij∗pi∗j

and A⊥⊥B if and only if all such ratios are equal to one.

Conditioning on the values of a third variable C = k we
similarly have conditional independence A⊥⊥B |C if and
only if

θii∗jj∗ | k =
pijkpi∗j∗k

pij∗kpi∗jk
= 1

for all combinations of the indices.

7No second-order interaction

If the distribution satisfies the restriction of a log-linear
model with no second-order interaction, i.e. if

pijk = aijbjkcik

then

θii∗jj∗ | k =
aijbjkcikai∗j∗bj∗kci∗k

aij∗bj∗kcikai∗jbjkci∗k
=

aijaij∗

aij∗ai∗j

so the conditional odds-ratio is constant in k.

This does not imply absence of a Simpson paradox! For
the marginal distribution of I, J is

pij+ = aij

∑
k

bjkcik = aij b̃ij .
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For the IJ odds-ratio to be the same in the marginal table
as in the condition it must additionally hold that b̃ satisfies

b̃ij = αiβj .

This holds if either I ⊥⊥K | J or J ⊥⊥K | I.

Thus, a Simpson paradox concerning association between I
and J is avoided if one of the following graphical models
hold, and typically not otherwise.
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9Example

Department
Overall I II III IV V VI

odds-ratio 1.84 0.35 0.8 1.13 0.92 1.22 0.83

The empirical odds-ratios for the admission data indicate a
strong example of Simpson’s paradox.

For department I, Sex and admission is strongly negatively
associated. For other departments the association is
moderate and of changing sign.

But overall, the association is strong and positive!

10Two ordinal variables

Job satisfaction
Income Very diss. Little diss. Mod. sat. Very sat.

< 15, 000 1 3 10 6
15, 000–25, 000 2 3 10 7
25, 000–40, 000 1 6 14 12
> 40, 000 0 1 9 11

For ordinal variables we consider concordant and discordant
pairs: A pair (i1, j1), (i2, j2) is concordant

i1 < i2 and j1 < j2

it is discordant if it is the other way around

i1 < i2 and j1 > j2,

and otherwise it is tied .

11Kruskal’s gamma

Kruskal’s γ-coefficient is defined as

γ =
pc − pd

pc + pd
,

where pc and pd are the probability that a random pair of
individuals is a concordant or discordant pair.

Clearly, −1 ≤ γ ≤ 1 and γ = 0 for independent variables,
so γ is an analogue of the correlation.

As for the correlation, the variables can be dependent and
still have γ = 0.

Also γ = 1 if and only pij = 0 for j < i and similarly for
γ = −1.

12

The empirical analogue of Kruskal’s γ is

γ̂ =
nc − nd

nc + nd
=

1331− 841
1331 + 841

= 0.221

in the example. So there is a mild (but significant) positive
relation between income and job satisfaction.

A test using |γ̂| as test statistic can be made using
Monte-Carlo p-values (not implemented in MIM).

MIM features a variety of alternative test statistic for
exploiting ordinality.

These include the Wilcoxon statistic, the Kruskal–Wallis
statistic and the Jonckheere–Terpstra statistic. See
Edwards (2002), Chapter 5 for detailed description of these.

13Wilcoxon test

Response
Centre Status Treatment Poor Moderate Excellent

1 1 Active 3 20 5
Placebo 11 14 8

2 Active 3 14 12
Placebo 6 13 5

2 1 Active 12 12 0
Placebo 11 10 0

2 active 3 9 4
Placebo 6 9 3

Multicentre analgesic trial. Here are four variables C:
Centre, S: Status, T : Treatment, and R: Response.

Wilcoxon test-statistic compares distribution of ranks
between two distributions. Ranks are well-defined for
ordinal data.

14Several categories

Response
Drug regimen None Partial Complete

1 2 0 0
2 1 1 0
3 3 0 0
4 2 2 0
5 1 1 4

Two variables D: Drug regimen, R: response. The
Kruskal-Wallis test statistic measure deviations from
independence in direction of at least one distribution
stochastically larger than the others.

Kruskal-Wallis test specializes to Wilcoxon test for binary
variables.

15Two ordinal variables

Job satisfaction
Income Very diss. Little diss. Mod. sat. Very sat.

< 15, 000 1 3 10 6
15, 000–25, 000 2 3 10 7
25, 000–40, 000 1 6 14 12
> 40, 000 0 1 9 11

Two ordinal variables: J : Job satisfaction, I: Income.
Jonckheere-Terpstra test measures deviations from
independence in direction of all distributions being
stochastically ordered.

The Jonckheere–Terpstra test specializes to the Wilcoxon
test if one of the two ordinal variables are binary.
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Square tables

In some cases, the variables A and B represent ‘the same
thing’ and quite different hypotheses become relevant, for
example that of marginal homogeneity

pi+ = p+i.

After
Before Approve Disapprove Total

Approve 794 150 944
Disapprove 86 570 656

Total 880 720 1600

Attitude towards UK prime minister. Opinion poll data
from Agresti, Ch. 10.

17A panel of 1600 persons were asked at two points in time
whether they approved of the policy of the current PM. The
interesting question is whether the opinion has changed. If
it has not, we say there is marginal homogeneity

pi+ = p+i, for all i. (1)

In 2× 2 case this is equivalent to having δ = 0 where

δ = p1+ − p+1

= (p11 + p12)− (p11 + p21) = p12 − p21

so
p1+ = p+2 ⇐⇒ p12 = p21,

i.e. marginal homogeneity is equivalent to symmetry, where

18the hypothesis of symmetry is given as

pij = pji. (2)

The empirical counterpart of δ is

δ̂ =
n12 − n21

n
.

Under the assumption of homogeneity, the variance of δ̂
can be calculated as

V(nδ̂) = 2np12 = 2np21 = 2np.

Under the hypothesis

p̂ =
n12 + n21

2n
,

19

so

χ2 =
nδ̂2

2np̂
=

(n12 − n21)2

n12 + n21

is for large n approximately χ2 distributed with 1 degree of
freedom.

In the example, we get

χ2 =
(86− 150)2

86 + 150
= 17.4

which is highly significant.

20More than two states

The test for symmetry of A and B as expressed in (2)
generalizes immediately to several states as

χ2 =
∑

i

∑
j>i

(nij − nji)2

nij + nji

which is approximately χ2 distributed with I(I − 1)/2
degrees of freedom.

Clearly, marginal symmetry implies marginal homogeneity .

However, the converse is false in the multi-state case.

Testing for marginal homogeneity is more complicated then,
see Agresti, Ch. 10.

21



Missing Data and the EM algorithm

MSc Further Statistical Methods
Lecture 4 and 5
Hilary Term 2007

Steffen Lauritzen, University of Oxford; January 31, 2007

1Missing data problems

case A B C D E F

1 a1 b1 ∗ d1 e1 *
2 a2 ∗ c2 d2 e2 ∗
...

...
...

...
...

...
...

n an bn cn ∗ ∗ ∗

∗ or NA denotes values that are missing , i.e. non-observed.

2Examples of missingness

• non-reply in surveys;

• non-reply for specific questions: ”missing” ∼ don’t
know, essentially an additional state for the variable
in question

• recording error

• variable out of range

• just not recorded (e.g. too expensive)

Different types of missingness demand different treatment.

3Notation for missingness

Data matrix Y , missing data matrix M = {Mij}:

Mij =
{

1 if Yij is missing
0 if Yij is observed.

Convenient to introduce the notation Y = (Yobs, Ymis),
where Ymis are conceptual and denote the data that were
not observed.

This notation follows Little and Rubin (2002).

4

Patterns of missingness

Little and Rubin (2002) classify these into the following
techincal categories.

We shall illustrate with a case of cross-classification of Sex,
Race, Admission and Department, S,R,A,D.

Univariate: Mij = 0 unless j = j∗, e.g. an unmeasured
response. Example: R unobserved for some, but data
otherwise complete.

Multivariate: Mij = 0 unless j ∈ J ⊂ V , as above, just
with multivariate response, e.g. in surveys. Example:
For some subjects, both R and S unobserved.

5Monotone: There is an ordering of V so Mik = 0 implies
Mij = 0 for j < k, e.g. drop-out in longitudinal
studies. Example: For some, A is unobserved, others
neither A nor R, but data otherwise complete.

Disjoint: Two subsets of variables never observed
together. Controversial. Appears in Rubin’s causal
model. Example: S and R never both observed.

General: none of the above. Haphazardly scattered
missing values. Example: R unobserved for some, A
unobserved for others, S,D for some.

Latent: A certain variable is never observed. Maybe it is
even unobservable. Example: S never observed, but
believed to be important for explaining the data.

6Methods for dealing with missing data

Complete case analysis: analyse only cases where all
variables are observed. Can be adequate if most cases
are present, but will generally give serious biases in
the analysis. In survey’s, for example, this
corresponds to making inference about the population
of responders, not the full population;

Weighting methods. For example, if a population total
µ = E(Y ) should be estimated and unit i has been
selected with probability πi a standard method is the
Horwitz–Thompson estimator

µ̂ =

∑ Yi

πi∑
1
πi

.

7To correct for non-response, one could let ρi be the
response-probability, estimate this in some way as ρ̂i

and then let

µ̃ =

∑ Yi

πiρ̂i∑
1

πiρ̂i

.

Imputation methods: Find ways of estimating the values
of the unobserved values as Ŷmis, then proceed as if
there were complete data. Without care, this can give
misleading results, in particular because the ”sample
size” can be grossly overestimated.

Model-based likelihood methods: Model the missing data
mechanism and then proceed to make a proper
likelihood-based analysis, either via the method of
maximum-likelihood or using Bayesian methods. This

8



appears to be the most sensible way.

Typically this approach was not computationally
feasible in the past, but modern algorithms and
computers have changed things completely. Ironically,
the efficient algorithms are indeed based upon
imputation of missing values, but with proper
corrections resulting.

9Mechanisms of missingness

The data are missing completely at random, MCAR, if

f(M |Y, θ) = f(M | θ), i.e. M ⊥⊥Y | θ.

Heuristically, the values of Y have themselves no
influence on the missingness. Example is recording
error, latent variables, and variables that are missing
by design (e.g. measuring certain values only for the
first m out of n cases). Beware: it may be
counterintuitive that missing by design is MCAR.

The data are missing at random, MAR, if

f(M |Y, θ) = f(M |Yobs, θ), i.e. M ⊥⊥Ymis | (Yobs, θ).

10Heuristically, only the observed values of Y have
influence on the missingness. By design, e.g. if
individuals with certain characteristics of Yobs are not
included in part of study (where Ymis is measured).

The data are not missing at random, NMAR, in all other
cases.

For example, if certain values of Y cannot be
recorded when they are out of range, e.g. in survival
analysis.

The classifications above of the mechanism of missingness
lead again to increasingly complex analyses.

It is not clear than the notion MCAR is helpful, but MAR
is. Note that if data are MCAR, they are also MAR.

11Likelihood-based methods

The most convincing treatment of missing data problems
seems to be via modelling the missing data mechanism, i.e.
by considering the missing data matrix M as an explicit
part of the data.

The likelihood function then takes the form

L(θ |M,yobs) ∝
∫
f(M,yobs, ymis | θ) dymis

=
∫
Cmis(θ |M,yobs, ymis)f(yobs, ymis | θ) dymis,(1)

where the factor Cmis(θ |M,y) = f(M | yobs, ymis, θ) is
based on an explicit model for the missing data mechanism.

12

Ignoring the missing data mechanism

The likelihood function ignoring the missing data
mechanism is

Lign(θ | yobs) ∝ f(yobs | θ) =
∫
f(yobs, ymis | θ) dymis. (2)

When is L ∝ Lign so the missing data mechanism can be
ignored for further analysis? This is true if:

1. The data are MAR;

2. The parameters η governing the missingness are
separate from parameters of interest ψ i.e. the
parameters vary in a product region, so that
information about the value of one does not restrict
the other.

13Ignorable missingness

If data are MAR and the missingness parameter is separate
from the parameter of interest, we have θ = (η, ψ) and

Cmis(θ) = f(M | yobs, ymis, η) = f(M | yobs, η)

Hence, the correction factor Cmis is constant (1) and can
be taken outside in the integral so that

L(θ |M,yobs) ∝ Cmis(η)Lign(θ | yobs)

and since

f(yobs, ymis | θ) = f(yobs, ymis |ψ)

we get

L(θ |M,yobs) ∝ Cmis(η)Lign(ψ | yobs),

14which shows that the missingness mechanism can be
ignored when concerned with likelihood inference about ψ.

For a Bayesian analysis the parameters must in addition be
independent w.r.t. the prior:

f(η, ψ) = f(η)f(ψ).

If the data are NMAR or the parameters are not separate,
then the missing data mechanism cannot be ignored.

Care must then be taken to model the mechanism
f(M | yobs, ymis, θ) and the corresponding likelihood term
must be properly included in the analysis.

Note: Ymis is MAR if data is (M,Y ), i.e. if M is considered
part of the data, since then M ⊥⊥Ymis | (M,Yobs, θ).

15The EM algorithm

The EM algorithm is an alternative to Newton–Raphson or
the method of scoring for computing MLE in cases where
the complications in calculating the MLE are due to
incomplete observation and data are MAR, missing at
random, with separate parameters for observation and the
missing data mechanism, so the missing data mechanism
can be ignored.

Data (X,Y ) are the complete data whereas only
incomplete data Y = y are observed. (Rubin uses Y = Yobs

and X = Ymis).

The complete data log-likelihood is:

l(θ) = logL(θ;x, y) = log f(x, y; θ).

16



The marginal log-likelihood or incomplete data
log-likelihood is based on y alone and is equal to

ly(θ) = logL(θ; y) = log f(y; θ).

We wish to maximize ly in θ but ly is typically quite
unpleasant:

ly(θ) = log
∫
f(x, y; θ) dx.

The EM algorithm is a method of maximizing the latter
iteratively and alternates between two steps, one known as
the E-step and one as the M-step, to be detailed below.

We let θ∗ be and arbitrary but fixed value, typically the
value of θ at the current iteration.

The E-step calculates the expected complete data
log-likelihood ratio q(θ | θ∗):

17

q(θ | θ∗) = Eθ∗

[
log

f(X, y; θ)
f(X, y; θ∗)

|Y = y

]
=

∫
log

f(x, y; θ)
f(x, y; θ∗)

f(x | y; θ∗) dx.

The M-step maximizes q(θ | θ∗) in θ for for fixed θ∗, i.e.
calculates

θ∗∗ = arg max
θ
q(θ | θ∗).

After an E-step and subsequent M-step, the likelihood
function has never decreased.

The picture on the next overhead should show it all.

18Expected and complete data likelihood
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19Kullback-Leibler divergence

The KL divergence between f and g is

KL(f : g) =
∫
f(x) log

f(x)
g(x)

dx.

Also known as relative entropy of g with respect to f .

Since − log x is a convex function, Jensen’s inequality gives

KL(f : g) ≥ 0 and KL(f : g) = 0 if and only if f = g,
since

KL(f : g) =
∫
f(x) log

f(x)
g(x)

dx ≥ − log
∫
f(x)

g(x)
f(x)

dx = 0,

so KL divergence defines an (asymmetric) distance measure
between probability distributions.

20

Expected and marginal log-likelihood

Since f(x | y; θ) = f{(x, y); θ}/f(y; θ) we have

q(θ | θ∗) =
∫

log
f(y; θ)f(x | y; θ)
f(y; θ∗)f(x | y; θ∗)

f(x | y; θ∗) dx

= log f(y; θ)− log f(y; θ∗)

+
∫

log
f(x | y; θ)
f(x | y; θ∗)

f(x | y; θ∗) dx

= ly(θ)− ly(θ∗)−KL(fy
θ∗ : fy

θ ).

Since the KL-divergence is minimized for θ = θ∗,
differentiation of the above expression yields

∂

∂θ
q(θ | θ∗)

∣∣∣∣
θ=θ∗

=
∂

∂θ
ly(θ)

∣∣∣∣
θ=θ∗

.

21Let now θ0 = θ∗ and define the iteration

θn+1 = arg max
θ
q(θ | θn).

Then

ly(θn+1) = ly(θn) + q(θn+1 | θn) +KL(fy
θn+1

: fy
θn

)

≥ ly(θn) + 0 + 0.

So the log-likelihood never decreases after a combined
E-step and M-step.

It follows that any limit point must be a saddle point or a
local maximum of the likelihood function.

22Mixtures

Consider a sample Y = (Y1, . . . , Yn) from individual
densities

f(y;α, µ) = {αφ(y − µ) + (1− α)φ(y)}

where φ is the normal density

φ(y) =
1√
2π
e−y2/2

and α and µ are both unknown, 0 < α < 1.

This corresponds to a fraction α of the observations being
contaminated, or originating from a different population.

23Incomplete observation

The likelihood function becomes

Ly(α, µ) =
∏

i

{αφ(yi − µ) + (1− α)φ(yi)}

is quite unpleasant, although both Newton–Raphson and
the method of scoring can be used.

But suppose we knew which observations came from which
population?

In other words, let X = (X1, . . . , Xn) be i.i.d. with
P (Xi = 1) = α and suppose that the conditional
distribution of Yi given Xi = 1 was N (µ, 1) whereas given
Xi = 0 it was N (0, 1), i.e. that Xi was indicating whether
Yi was contaminated or not.

24



Then the marginal distribution of Y is precisely the mixture
distribution and the ‘complete data likelihood’ is

Lx,y(α, µ) =
∏

i

αxiφ(yi − µ)xi(1− α)1−xiφ(yi)1−xi

∝ α
∑

xi(1− α)n−
∑

xi

∏
i

φ(yi − µ)xi

so taking logarithms we get (ignoring a constant) that

lx,y(α, µ) =
∑

xi logα+
(
n−

∑
xi

)
log(1− α)

−
∑

i

xi(yi − µ)2/2.

If we did not know how to maximize this explicitly,

25differentiation easily leads to:

α̂ =
∑

xi/n, µ̂ =
∑

xiyi/
∑

xi.

Thus, when complete data are available the frequency of
contaminated observations is estimated by the observed
frequency and the mean µ of these is estimated by the
average among the contaminated observations.

26E-step and M-step

By taking expectations, we get the E-step as

q(α, µ |α∗, µ∗) = Eα∗,µ∗{lX,y(α, µ) |Y = y}

=
∑

x∗i logα+
(
n−

∑
x∗i

)
log(1− α)

−
∑

i

x∗i (yi − µ)2/2

where

x∗i = Eα∗,µ∗(Xi |Yi = yi) = Pα∗,µ∗(Xi = 1 |Yi = yi).

Since this has the same form as the complete data
likelihood, just with x∗i replacing xi, the M-step simply

27

becomes

α∗∗ =
∑

x∗i /n, µ∗∗ =
∑

x∗i yi/
∑

x∗i ,

i.e. here the mean of the contaminated observations is
estimated by a weighted average of all the observations, the
weight being proportional to the probability that this
observation is contaminated. In effect, x∗i act as imputed
values of xi.

The imputed values x∗i needed in the E-step are calculated
as follows:

x∗i = E(Xi |Yi = yi) = P (Xi = 1 |Yi = yi)

=
α∗φ(yi − µ∗)

α∗φ(yi − µ∗) + (1− α∗)φ(yi)
.

28Incomplete two-way tables

As another example, let us consider a 2×-table with
n1 = {n1

ij} complete observations of two binary variables I

and J , n2 = {ni+ observations where only I was observed,
and n3 = {n+j observations where only J was observed,
and let us assume that the mechanism of missingness can
be ignored.

The complete data log-likelihood is

logL(p) =
∑
ij

(n1
ij + n2

ij + n3
ij) log pij

and the E-step needs

n∗ij = n1
ij + n2∗

ij + n3∗
ij

29where
n2∗

ij = E(N2
ij | p, n2

i+) = pj | in
2
i+

and
n3∗

ij = E(N3
ij | p, n3

+j) = pi | jn
2
+j .

We thus get

n2∗
ij =

pij

pi0 + pi1
n2

i+, n3∗
ij =

pij

p0j + p1j
n3

+j . (3)

The M-step now maximizes logL(p) =
∑

ij n
∗
ij log pij by

letting
pij = (n1

ij + n2∗
ij + n3∗

ij )/n (4)

where n is the total number of observations.

The EM algorithm alternates between (3) and (4) until
convergence.
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Latent Variable Models
and Factor Analysis

MSc Further Statistical Methods
Lectures 6 and 7
Hilary Term 2007

Steffen Lauritzen, University of Oxford; February 8, 2007

1Basic idea

Latent variable models attempt to explain complex relations
between several variables by simple relations between the
variables and an underlying unobservable, i.e. latent
structure.

Formally we have a collection X = (X1, . . . , Xp) of
manifest variables which can be observed, and a collection
Y = (Y1, . . . , Yq) of latent variables which are unobservable
and ‘explain’ the dependence relationships between the
manifest variables.

Here ‘explaining’ means that the manifest variables are
assumed to be conditionally independent given the latent
variables, corresponding e.g. to the following graph:
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Here Y is the latent variable(s) and there are 5 manifest
variables X1, . . . , X5.

For the model to be useful, q must be much smaller than p.

Data available will be repeated observations of the vector
X = (X1, . . . , Xp) of manifest variables.

3Latent variable models are typically classified according to
the following scheme:

Manifest variable
Latent variable Metrical Categorical

Metrical Factor analysis Latent trait analysis
Categorical Latent profile analysis Latent class analysis

Other terminologies are used, e.g. discrete factor analysis
for latent trait analysis.

Categorical variables can either be ordinal or nominal, and
metrical variables can either be discrete or continuous.

4

An example

A classical latent trait model is behind intelligence testing.

The intelligence of any individual is assumed to be a latent
variable Y measured on a continuous scale.

An intelligence test is made using a battery of p tasks, and
an individual scores Xi = 1 if the individual solves task i
and 0 otherwise.

The test is now applied to a number of individuals to
establish and estimate the parameters in the model.

Subsequently the test battery will be used to estimate the
intelligence of a given individual by using

E(Y |X1 = x1, . . . , Xp = xp)

5as the estimate of intelligence for a given individual with
score results x = (x1, . . . , xp).

Typical models will now have the intelligence distributed as

Y ∼ N (µ, σ2)

and the manifest variables as

πi(y) = P (Xi = 1 |Y = y) =
eαi+βiy

1 + eαi+βiy

corresponding to

logit{πi(y)} = αi + βiy,

i.e. the response for each item being a logistic regression on
the latent intelligence.

6This model has too many parameters so we need to
standardise and choose e.g. µ = 0 and σ2 = 1 to have a
chance of estimating αi and βi.

We may increase the dimensionality of this model by
assuming Y and βi are q-dimensional and have

Y ∼ Nq(0, I), logit{πi(y)} = αi + β>i y.

This model is known as the logit/normit model .

Estimation is typically done by the EM-algorithm. The
E-step involves numerical integration and the M-step needs
in principle iterative methods as well.

See Bartholomew and Knott (1999), pp. 80–83 for details.

7Estimation in latent variable models

Historically, algorithms for maximizing the likelihood
function have been developed separately for each specific
model.

Generally, estimation problems can be very difficult and
there are problems with uniqueness of estimates.

The difficulties show in particular if sample sizes are small
and p is not large relatively to q.

There are also severe problems with the asymptotic
distribution of likelihood ratio tests.

Latent variable models are perfectly suitable for the EM
algorithm as Y is MCAR.

8



However, the general ‘well-established’ knowledge is that
the EM algorithm is too slow.

Typicallly, the EM algorithm quickly gets close to the MLE,
but then slows down. This suggests a hybrid approach to
be suitable, where the EM algorithm is applied initially to
get good starting values, then special algorithms for the
final convergence.

MIM implements a version of the EM-algorithm which is
applicable for latent class analysis, latent profile analysis,
and factor analysis, but not latent trait analysis.

9The linear normal factor model

The p manifest variables X> = (X1, . . . , Xp) are linearly
related to the q latent variables Y > = (Y1, . . . , Yq) as

X = µ+ ΛY + U, (1)

where Y and U are independent and follow multivariate
normal distributions

Y ∼ Nq(0, I), U ∼ Np(0,Ψ),

where Ψ is a diagonal matrix, i.e. the indidividual error
terms Ui are assumed independent.

The latent variables Yj are the factors and Λ the matrix of
factor loadings.

10Dependence graph of LNF model
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Graph only displays conditional independences. In addition,
Y1 ⊥⊥Y2.

11Linear factor analysis

The idea of the LNF model is to describe the variation in X
by variation in a latent Y plus noise, where the number of
factors q is considerably smaller than p.

The problem is now to determine the smallest q for which
the model is adequate, estimate the factor loadings and the
error variances.

The marginal distribution of the observed X is

X ∼ Np(µ,Σ), Σ = ΛΛ> + Ψ.

The factor loadings Λ cannot be determined uniquely. For
example, if O is an orthogonal q × q-matrix and we let

12

Ỹ = OY and Λ̃ = ΛO> we have

Λ̃Ỹ = ΛO>OY = ΛY

and thus

X = µ+ ΛY + U = X + µ+ Λ̃Ỹ + U.

Since also Ỹ ∼ Nq(0, I) and

Λ̃Λ̃> = ΛO>OΛ> = ΛΛ>,

Λ and Λ̃ specify same distribution of the observable X.

Hence Λ is only identifiable modulo orthogonal equivalence.

13Maximum likelihood estimation

Let

S =
1
N

N∑
n=1

(Xn − X̄)(Xn − X̄)>

be the empirical covariance matrix. The likelihood function
after maximizing in µ to obtain µ̂ = X̄ is

logL(Σ) = −np
2

log(2π)− n

2
log det(Σ)− n

2
tr(Σ−1S).

Maximizing this under the constraint Σ = ΛΛ> + Ψ can be
quite tricky.

After some (complex) manipulation, the likelihood
equations can be collected in two separate equations. One

14is the obvious equation

Ψ = diag(S − ΛΛ>) (2)

which gives Ψ in terms of S and Λ.

To express Λ in terms of S and ψ is more complex.
Introduce

S∗ = Ψ−1/2SΨ−1/2, Λ∗ = Ψ−1/2Λ.

Then the MLE of Λ∗ can be determined by the following
two criteria:

1. The columns of Λ∗ = (λ∗1 : · · · : λ∗q) are eigenvectors
of the q largest eigenvalues of S∗.

152. If Γ is a diagonal matrix with Γii being the eigenvalue
associated with λ∗i , then

Γii > 1, S∗Λ∗ = Λ∗Γ. (3)

A classic algorithm begins with an initial value of Ψ, finds
the eigenvectors e∗i corresponding to the q largest
eigenvalues of S∗, lets λ∗i = θie

∗
i and solves for θi in (3).

When Λ∗ and thereby Λ has been determined in this way, a
new value for Ψ is calculated using (2).

The algorithm can get severe problems if at some point the
constraints ψii > 0 and Γii > 1 are violated.

The EM algorithm is a viable alternative which may not be
sufficiently well exploited. See B & K(1999), §3.6 for
details of this.

16



Choice of the number of factors

Under regularity conditions, the deviance

D = −2{logL(H0)− logL(H1)}
= n{tr(Σ̂−1S)− log det(Σ̂−1S)− p}

has an approximate χ2-distribution with ν degrees of
freedom where

ν =
1
2
{(p− q)2 − (p+ q)}.

One can now either choose q as small as possible with the
deviance being non-significant, or one can minimze AIC or
BIC where

AIC = D + 2ν, BIC = D + ν logN.

17Interpretation

To interpret the results of a factor analysis, it is customary
to look at the communality ci of the manifest variable Xi

ci =
V(Xi)−V(Ui)

V(Xi)
= 1− ψii

ψii +
∑q

j=1 λ
2
ij

which is the proportion of the variation in Xi explained by
the latent factors. Each factor Yj contributes

λij

ψii +
∑q

j=1 λ
2
ij

to this explanation.

18Typically the variables X are standardized so that they add
to 1 and have unit variance, corresponding to considering
just the empirical correlation matrix C instead of S.

Then

ψii +
q∑

j=1

λ2
ij = 1

so that ci = 1− ψii and λ2
ij is the proportion of V(Xi)

explained by Yj .

19Orthogonal rotation

Since Y is only defined up to an orthogonal rotation, we
can choose a rotation ourselves which seems more readily
interpretable, for example one that ‘partitions’ the latent
variables into groups of variables that mostly depend on
specific factors, known as a varimax rotation

A little more dubious rotation relaxes the demand of
orthogonality and allows skew coordinate systems and other
variances than 1 on the latent factors, corresponding to
possible dependence among the factors. Such rotations are
oblique.

20

Example

This example is taken from Bartholomew (1987) and is
concerned with 6 different scores in intelligent tests. The
p = 6 manifest variables are

1. Spearman’s G-score

2. Picture completion test

3. Block Design

4. Mazes

5. Reading comprehension

6. Vocabulary

21A 1-factor model gives a deviance of 75.56 with 9 degrees
of freedom and is clearly inadequate.

A 2-factor model gives a deviance of 6.07 with 4 degrees of
freedom and appears appropriate.

The loadings of each of the 6 variables can be displayed as
black dots in the following diagram

22

23This diagram also shows axes corresponding to varimax and
oblique rotations

It is tempting to conclude that 2, 3 and 4 seem to be
measuring the same thing, whereas 5 and 6 are measuring
something else. The G-score measures a combination of the
two.

The axes of the oblique rotation represent the
corresponding ”dimensions of intelligence”.

Or is it all imagination?
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Dependence graph of simplified model
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Y1 and Y2 are no longer independent.
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Multilevel Analysis

Further Statistical Methods, Lecture 8
Hilary Term 2007

Steffen Lauritzen, University of Oxford; February 15, 2007

1Multilevel observations

Multilevel analysis is concerned with observations with a
nested structure.

For a two-level analysis we typically think of individuals
within groups. The individual level is in general called level
one, the group level level two.

An example of observations of this type can for example be
performance measures for pupils of a specific age-group
within classes.

The levels could be nested yet another time as e.g. classes
within schools. And further, the schools could be grouped
according to regions within countries, etc. although at the

2top-level there might well be problems of compatibility of
performance measures.

For simplicity we will only consider two levels, pupils within
classes.

3An example

As our basic example we will consider a Dutch study
comprising N = 131 classes, each of sizes between 4 and
35, with a total of M = 2287 pupils.

The performance measure of interest is the score on a
language test, and explanatory variables include class sizes
and the IQ of individual pupils.

We let Yij , j = 1, . . . N, i = 1, . . . nj be the score for pupil i
in class j and study the dependence of this response on
covariates such as the IQ xij of the pupil and the size zj of
the class.

xij are level one covariates and zj level two covariates.

4

A simple regression model

A first attempt could be to let

Yij = β0 + β1xij + β2zj + Rij

with Rij independent and distributed as N (0, σ2).

This is a standard linear regression model which only has an
indirect multilevel character.

The model ignores that pupils in the same class will tend to
have more similar scores than those in different classes,
even when the covariates are taken into account.

This is a very serious mistake if the variations in score at
group level are not fully explained by the covariates.

5Introducing random effects

For a moment, ignore the covariates xij and zj and
consider instead the model

Yij = β0 + Uj + Rij

where Uj ∼ N (0, τ2). This model then has

V(Yij) = σ2+τ2, Cov(Yij , Yi′j) = τ2, Cov(Yij , Yi′j′) = 0

so that scores of pupils within the same class are correlated.
The correlation is

ρ =
τ2

σ2 + τ2

and is known as the intraclass correlation coefficient.

6This type of model is also known as a random effects
model since one could think of βj = β0 + Uj as a group
effect, in this case modelled as a random effect. Adding
back the covariates leads to

Yij = β0 + β1xij + β2zj + Uj + Rij .

It can give a better overview to introduce an intermediate
variable describing the total class effect

Mj = β0 + β2zj + Uj ; Yij = Mj + β1xij + Rij

where Mj now become missing data, or rather latent
variables.

7Estimation of parameters

The maximum likelihood (ML) estimates of the parameters
can be obtained using the EM algorithm, treating Mj as
missing variables.

For ‘complete data’, with Mj observed, the estimation
problem splits into two simple linear regression problems

1. Estimating (β0, β2, τ
2) by regressing Mj on zj ;

2. Estimating β1, σ
2 by regressing Yij −Mj on xij

Unfortunately the ML estimates of the variance
components (σ2, τ2) can be very biased, as these do not
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take into account the loss in degrees of freedom due to the
estimation of regression coefficients.

Instead a method known as residual maximum likelihood or
REML is often used.

This involves (in principle) the following steps

1. Calculate initial estimates of regression coefficients
using OLS, ignoring the multi-level structure;

2. Form residuals

r̂ij = yij − β̂0 − β̂1xij − β̂2zj .

3. These residuals R̂ follow a multivariate normal
distribution with mean 0 and a covariance matrix
Σ(σ2, τ2);

94. The REML estimates of (σ2, τ2) are the maximum
likelihood estimates based on the residualsR̂.

5. Revised estimates of the regression parameters are
then calculated using appropriate weighted least
squares.

An algorithm of EM type exists for calculating the REML
estimates, but this and other methods have also been
implemented in generally available software.

10Estimating random effects

It could be of independent interest, for example when
making performance ranking, to estimate the level two
effects which are not explained by covariates, i.e.

βj = β0 + Uj .

This can be done by calculating

β̂j = β̂0 + Ê(Uj |Y ),

i.e. the estimated conditional expectation given the
observed data.

11A Bayesian alternative

An alternative method of analysis is to specify prior
distributions of the unknown parameters.

The resulting model is then a Bayesian hierarchical model.

It has a simple representation as a Bayesian graphical
model and WinBUGS provides the necessary software for
estimating all relevant effects using Markov chain
Monte-Carlo methods (MCMC).

12

Example of a directed graphical model

13Directed graphical models

A probability distribution factorizes w.r.t. a directed acyclic
graph (DAG) D if it has density or probability mass
function f of the form

f(x) =
∏
v∈V

f(xv |xpa(v)),

i.e. into a product of the conditional distributions of each
node given its parents.

14Example of DAG factorization
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The above graph corresponds to the factorization

f(x) = f(x1)f(x2 |x1)f(x3 |x1)f(x4 |x2)
× f(x5 |x2, x3)f(x6 |x3, x5)f(x7 |x4, x5, x6).

15Including parameters and observations

Directed graphical models become particularly useful when
parameters are explicitly included in the graph.

The factorization can then be written as

f(x | θ) =
∏
v∈V

f(xv |xpa(v),θ).

Each conditional distribution may only depend of part of
the parameter, the ‘parameter parents’.

To be able to describe complex observational patterns, we
would wish to represent repeated structures. This can be
done through plates as in WinBUGS.
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Warnings

Beware that prior distributions can be influential.

Note in particular that the parameters mean different things
when covariates are centered in different ways, yielding
different models with default prior specifications:

Yi ∼ N(α + βxi, σ
2), α ∼ N(0, 100), β ∼ N(0, 100)

is very different from

Yi ∼ N(α + βx∗i , σ
2), α ∼ N(0, 100), β ∼ N(0, 100),

where x∗i = xi − x̄. Without the prior specifications, the
models would be equivalent, only the interpretation of α
would be different.

17

WinBUGS makes inference on the parameters by MCMC
computation. It is easy to specify a very complex model in
WinBUGS. However, the results of the MCMC computation
may then be very unreliable.

Additional comment:

Snijders and Bosker (1999) write that BUGS needs
balanced data, i.e. equal group sizes, to be applied.

This is not correct, on the contrary, BUGS was developed
to allow very unbalanced designs indeed.
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Longitudinal data

Further Statistical Methods

Lecture 9
Hilary Term 2007

Steffen Lauritzen, University of Oxford; February 20, 2007

1Longitudinal data

Longitudinal data can be seen as a specific type of
multi-level data, where the level one units refer to
observations over time of the value of specific quantities,
taken on the same level two unit.

Typically level two units are here individuals i = 1, . . . , N .
For each of them we have observations Yij , j = 1, . . . , ni

taken at times t1, . . . , tni .

Models for longitudinal data differ from general multilevel
data partly by almost always using time as a covariate, but
specifically by using time in the dependence structure
between measurements taken on the same units.

2Covariates for longitudinal data

As in the multilevel data we may have covariates
xij = (xij1, . . . xijk)> and zi = (zi1 . . . , zil)> at both
levels.

But for longitudinal data xij typically include time or
functions of time, such as e.g.

xij1 = 1, xij2 = tij , xij3 = t2ij

corresponding to a quadratic trend, or

xij1 = 1, xij2 = cos(2πftij), xij3 = sin(2πftij)

corresponding to a periodic trend with period λ = 1/f , etc.

3A general linear model

The general linear model for longitudinal data is then given
as

Yij = α>zj + β>xij + εij ,

where the errors εij are multivariate Gaussian and
correlated as

Cov(εij , εi′j′) = vii′jj′

where

vii′jj′ =
{

c(tij , tij′) if i = i′

0 otherwise,

for some covariance model determined by the function c.
The models thus allow for correlation between observations
from the same individual but assume independence between
individuals.

4

Correlation models

A flexible class of covariance models has three components:

c(tij , tij′) = ν2 + σ2ρ(tij − tij′) + τ2δjj′ ,

where δjj′ is 1 for j = j′ and 0 otherwise.

The first component ν2 reflects the intrinsic correlation
between measurements taken on the same individual, as in
the multilevel case.

The second component σ2 describes a (stationary) serial
correlation as known from time series analysis.

The final component τ2 corresponds to an instantaneous
noise term.

5The variogram

The variogram for a stochastic process X(t) is the function

γ(u) =
1
2
E

[
{X(t)−X(t− u)}2

]
, u ≥ 0.

For the error process with three components just defined we
get

γ(u) = τ2 + σ2{1− ρ(u)}, for u > 0.

Choosing ρ so that ρ(0) = 1, limt→∞ ρ(t) = 0 yields

γ(0) = τ2, lim
t→∞

γ(u) = σ2 + τ2 (1)

whereas the process variance is

V{Y (tij)} = c(tij , tij) = ν2 + σ2 + τ2, (2)

6as reflected in the following diagram, taken from Diggle et
al. (2002).

7Sample variogram

To identify reasonable suggestions for the covariance
structure, residuals rij from a least squares fit of the
parameters are calculated and the sample variogram is
based on a curve through points (uijk, vijk), where

uijk = tij − tik, vijk =
1
2
(rij − rik)2

or rather averages of vijk for indices corresponding to
identical time differences u.

Such a sample variogram gives a first idea of the importance
of the three components of variance using (1) and (2) and
some idea of the shape of the serial correlation function ρ.
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An example of a sample variogram, taken from Diggle et al.
(2002) is seen below. Note that there are few large time
differences, so the variogram becomes noisy for large lags,
here around lag 10.

In this case there is essentially no within pig correlation.

9Choice of correlation function

Generally the time series are often many but short, so there
is little information about the shape of the serial correlation
function and one is forced to rather ad hoc choices.

The serial correlation function must be positive definite to
ensure matrices of the form mrs = ρ(tr − ts) are positive
definite, for all choices of k and t1, . . . , tk.

Typical choices which satisfy these restrictions are

ρ1(t) = e−θ|t|, ρ2(t) = e−θt2/2,

known as the exponential and Gaussian correlation model.

It can be difficult to distinguish these from the sample
variogram.

10Estimation of parameters

In principle this is done in the same way as in other
multi-level models, using residual maximum likelihood
(REML).

Straight maximum likelihood yields strongly biased
estimates of the variance parameters and should be avoided.

Routines for calculating the REML estimates are available
in many forms of software.

They can be calculated using the following steps:

1. Calculate estimates (α̃, β̃) of the linear parameters by
ordinary least squares (OLS), ignoring the correlation;

11

2. Calculate the residuals

rij = yij − α̃>zj − β̃>xij

from the OLS analysis;

3. The vector R of residuals is N (0,W ) where the
covariance matrix W has the form

W = ν2A + σ2B(θ) + τ2C

where A,B,C are known matrices, B possibly
depending on θ;

4. Calculate the MLE of (ν2, σ2, τ2, θ) based on the
likelihood for the residuals;

125. Calculate the final estimates (α̂, β̂) using weighted
least squares (WLS) with weights determined by the
given covariance model and its estimated parameters.
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Alternative Methods and Models for
Longitudinal Data

Further Statistical Methods, Lecture 10
HT 2007

Steffen Lauritzen, University of Oxford; February 21, 2007

1Types of longitudinal data

There are many cases where the ‘standard model’ from last
lecture is inadequate, i.e. when the data are not well
described as the sum of three components: a general trend,
a (stationary) component with serial correlation, and
random noise.

This is for example true for such cases as

• Biokinetics: A substance is introduced into a person
and the concentration level of one or more
components is measured at selected time intervals
over a period.

The ‘substance’ can e.g. be one or more specific
drugs or types of food.

2The purpose of such analysis may be to understand
the shape of the curve, to get a grip of the duration
of a transient phenomenon, or e.g. the variation in
the maximally achieved value.

• Cucumber plants are grown in greenhouses. One
would like to know how different
watering/fertilization/treatment schemes affect the
growth. Cucumbers are picked daily from each plant
and recorded.

Cucumbers have a season. It takes a while before
they develop, then they give a lot of cucumbers for a
while, and then stop. The farmer would like to have a
lot of cucumbers when others don’t, so the price is
high.

3• Event history data follow individuals over time and
record when events happen.

• Flowers under different conditions. They develop
buds, the buds become flowers, and then die.
Different treatments make the plants develop
differently.

Plants that have lots of buds and some flowers are
selling best.

This can be seen as a type of event history data.

• Panel data follow a group of individuals (panel
members) over time. From time to time the members
are filling questionnaires, for example on their
political or consumer preferences.

4

• Growth models. It is not always reasonable to assume
this to be trend plus stationary error. Typically
growth can be high in some periods and low in
others, with some random variation.

• Speech analysis. Frequency properties of speech is
recorded at dense discrete time points (millisecond
intervals). One is interested in describing the
behaviour as different phonemes are pronounced, e.g.
for automatic speech recognition and -understanding.

5Descriptive methods

Transform an observed curve to a some features, e.g.

• The area A under the curve, representing the total
amount of something;

• The maximal value M reached of the curve;

• The total duration D of a signal, i.e. the time spent
above a certain level.

• A set of Fourier- or wavelet coefficients F ;

• etc...

Now use your favourite (multivariate) technique to analyse
(part of) the vector A,M,D,F .

6Differential equations

If the phenomenon observed is well understood, there might
be a relevant differential equation explaining the main
features of the observations.

An example from insulin kinetics postulates the following
relation between the plasma glucose concentration G(t),
insulin concentration I(t), and the insulin’s effect on the
net glucose disappearance X(t):

Ġ(t) = −p1{G(t)−Gb} −X(t)G(t), G(0) = 0,

Ẋ(t) = −p2X(t) + p3{I(t)− Ib}, X(0) = 0,

İ(t) = −n{I(t)− Ib}+ γ{G(t)− h}+t, I(0) = 0.

This is known as Bergman’s minimal model .

7The parameters are individual and to be determined from
observations. The important quantities are

• Insulin sensitivity: SI = p1/p2;

• Glucose effectiveness: SG = p1;

• Pancreatic responsiveness: (φ1, φ2) where
φ1 = (Imax − Ib)/{n(G0 −Gb)}, φ2 = γ × 104.

This is generally difficult, as only G(t), I(t) can be
observed, and only at discrete time points. Using graphical
models and MCMC in the right way, it is possible.

This general area is known as PK/PD for
pharmaco-kinetics/-dynamics.
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Dynamic models

These models, also known as state-space models (SSM) are
similar in spirit to differential equation models.

Typically they have two levels, but sometimes more. One
level describes the development of an unobserved (hidden)
state Xt, typically using a Markov model with e.g.

L(Xt+1 |Xs = xs, s ≤ t, θ) ∼ N{At(θ)xt, σ
2
t (θ)}

and an observational model for Yt with

L(Yt |X, η) = N{Bt(η)xt, τ
2(η)},

where Yt, t = 1, . . . , T are observed.

9Parameters are then estimated by using a variant of the EM
algorithm. The E-step can be performed elegantly using a
recursive algorithm known as the Kalman Filter .

MCMC is also a viable alternative and a hot research topic
is that of particle filters which can be seen as MCMC
variants of the Kalman filter.

Generalisations include replacing each of the models above
with generalised linear models.

For example, in the cucumber example it is natural to
consider Poisson model for the observed number of
cucumbers on a plant.

In speech analysis, Y is typically a feature vector of the
signal and the state space equation should depend on what
the individual is saying. Hence another level is typically
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introduced with Zt discrete taking values in possible
phonemes and and following a Markov model so that

P (Zt+1 = zt+1 |Zs = zs, s ≤ t) = q(zt+1 | zt, θ),

and

L(Xt+1 | (Xt = xs, Zt = zs), s ≤ t, θ) ∼
N{At(θ, zt)xt, σ

2
t (θ, zt)}.

and
L(Yt |X, η) = N{Bt(η)xt, τ

2(η)},
where Yt, t = 1, . . . , T are observed.

Such models are switching state space models (SSM).

If the middle level is missing, it is also called a hidden
Markov model (HMM).
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