
M.Sc. Practical HT2007 week 6

Graphical models with ordinal data

This practical exercise uses MIM and the interface package mimR to analyse data from
a study of types of housing in Denmark. The data were originally published by Madsen
(1976) but have been analysed often since, for example in MASS, where the dataset is
available as housing. The variables involved are

Satisfaction: The degree of satisfaction: low, medium, high.

Influence: The degree of influence on decisions: low, medium, high.

Contact: The degree of contact experienced: low, high.

Type: The type of housing: tower block, apartment, atrium house, and terraced house.

In principle, mimR will start up MIM when needed. However, this may give error
messages on some machines. To avoid this, it is best to start MIM manually before
loading mimR.

So, first start MIM.

Next start R and change directory to the appropriate one.

Then load mimR (which also loads MASS) and for visualization also Rgraphviz.

> library(mimR)

> library(Rgraphviz)

Next load data.

> data(housing)

> housing[1:5, ]

Sat Infl Type Cont Freq

1 Low Low Tower Low 21

2 Medium Low Tower Low 21

3 High Low Tower Low 28

4 Low Medium Tower Low 34

5 Medium Medium Tower Low 22

We need to transform data to a gmData object. Since the data frame uses Frequency
as a separate response variable, we first have to change format to a cross-classification
table.

> housingTab <- xtabs(Freq ~ Sat + Infl + Type + Cont, data = housing)

> ht <- as.gmData(housingTab)

The gmData object can now be displayed by the command

> ht

name letter factor levels

1 Sat a TRUE 3

2 Infl b TRUE 3

3 Type c TRUE 4



4 Cont d TRUE 2

Data origin : table

Note that the variable names are taken from the original dataframe. The ‘letters’,
a,b,c,d are names used by MIM.

Two of the variables are clearly ordinal. This is declared as follows

> ordinal(ht) <- c("Sat", "Infl")

The gmData object has now absorbed this information.

> ht

name letter factor levels

1 Sat a TRUE 3

2 Infl b TRUE 3

3 Type c TRUE 4

4 Cont d TRUE 2

Ordinal : Sat Infl

Data origin : table

Next we specify the saturated model as a MIM-model. The model specification syntax
for discrete data writes interaction terms in usual R syntax, then adds a double slash:

> msat <- mim("Sat:Infl:Cont:Type//", data = ht)

The dependence graph of the model can be displayed as

> display(msat)
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Next, we try to simplify the model by independence tests for all pairs of variables.

At this point, MIM is used as the calculator and mimR will automatically start MIM
whenever needed if this has not been done already.

> testdelete("Sat:Infl", msat)

test: Chi-squared method: asymptotic

stat: 135.69 df: 32 P: 0



> testdelete("Sat:Cont", msat)

test: Chi-squared method: asymptotic

stat: 32.871 df: 24 P: 0.107

> testdelete("Sat:Type", msat)

test: Chi-squared method: asymptotic

stat: 99.094 df: 36 P: 0

> testdelete("Infl:Cont", msat)

test: Chi-squared method: asymptotic

stat: 33.721 df: 24 P: 0.09

> testdelete("Infl:Type", msat)

test: Chi-squared method: asymptotic

stat: 43.755 df: 36 P: 0.175

> testdelete("Cont:Type", msat)

test: Chi-squared method: asymptotic

stat: 64.349 df: 27 P: 0

It appears that the least significant edge is between Influence and Type, but the rela-
tionships between Satisfacton and Contact and between Influence and Contact are not
significant either.

By using stepwise search with options, this can all be done with a single command:

> stepwise(msat, arg = "o")

Coherent Backward Single-step Selection.

Fixed edges: none.

Critical value: 0.0500

Decomposable mode, Chi-squared tests.

DFs adjusted for sparsity.

Model: abcd

Deviance: 0.0000 DF: 0 P: 1.0000

Edge Test

Excluded Statistic DF P

[ab] 135.6898 32 0.0000 +

[ac] 99.0937 36 0.0000 +

[ad] 32.8715 24 0.1068

[bc] 43.7552 36 0.1754

[bd] 33.7206 24 0.0898

[cd] 64.3488 27 0.0001 +

Formula: Sat:Infl:Type:Cont//

-2logL: 13544.49 DF: 0

Since we may be worried about the validity of the asymptotics, we also use Monte-Carlo
tests:

> stepwise(msat, arg = "om")

Coherent Backward Single-step Selection.

Fixed edges: none.



Critical value: 0.0500

Decomposable mode, Chi-squared tests.

Exact tests, Monte Carlo sampling.

DFs adjusted for sparsity.

Model: abcd

Deviance: 0.0000 DF: 0 P: 1.0000

Edge Test

Excluded Statistic DF P

[ab] 135.6898 32 0.0000 +

[ac] 99.0937 36 0.0061 +

[ad] 32.8715 24 0.1323

[bc] 43.7552 36 0.1900

[bd] 33.7206 24 0.1152

[cd] 64.3488 27 0.0012 +

Formula: Sat:Infl:Type:Cont//

-2logL: 13544.49 DF: 0

This makes no essential difference, so we choose to continue with standard asymptotic
options.

We can also go the entire way with a stepwise search and make a new model object from
this search. The argument ”u” ensures that the search is unrestricted and all purely
graphical models are investigated.

> mstep <- stepwise(msat, arg = "u")

Coherent Backward Selection.

Fixed edges: none.

Critical value: 0.0500

Unrestricted mode, Chi-squared tests.

Model: abcd

Deviance: 0.0000 DF: 0 P: 1.0000

Edge Test

Excluded Statistic DF P

[ab] 135.6898 32 0.0000 +

[ac] 99.0937 36 0.0000 +

[ad] 32.8715 24 0.1068

[bc] 43.7552 36 0.1754

[bd] 33.7206 24 0.0898

[cd] 64.3488 27 0.0001 +

Removed edge [bc]

Model: acd,abd

Deviance: 43.7552 DF: 36 P: 0.1754

Edge Test

Excluded Statistic DF P

[ad] 29.6432 12 0.0032 +

[bd] 24.4012 6 0.0004 +

Selected model: acd,abd

The dependence graph of the selected model can be displayed.

> display(mstep)
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This analysis did not exploit that some of the variables were ordinal. If we repeat the
same analysis, but use the appropriate ordinal test, we get a clearer picture from the
outset. Note that the ordering of the variables now matter and the non-ordinal variable
should be mentioned before the ordinal.

> testdelete("Sat:Infl", msat, arg = "j")

test: Jonckheere-Terpstra method: asymptotic

stat: 91192.5 df: 32 P: 0

> testdelete("Cont:Sat", msat, arg = "w")

test: Wilcoxon method: asymptotic

stat: 60178 df: 24 P: 0

> testdelete("Type:Sat", msat, arg = "k")

test: Kruskal-Wallis method: asymptotic

stat: 87.349 df: 18 P: 0

> testdelete("Cont:Infl", msat, arg = "w")

test: Wilcoxon method: asymptotic

stat: 70812 df: 24 P: 0

> testdelete("Type:Infl", msat, arg = "k")

test: Kruskal-Wallis method: asymptotic

stat: 23.077 df: 18 P: 0.1876

> testdelete("Cont:Type", msat)

test: Chi-squared method: asymptotic

stat: 64.349 df: 27 P: 0

With a single command, this can all be done as

> stepwise(msat, arg = "ow")

Coherent Backward Single-step Selection.

Fixed edges: none.



Critical value: 0.0500

Decomposable mode, Chi-squared tests.

DFs adjusted for sparsity.

Model: abcd

Deviance: 0.0000 DF: 0 P: 1.0000

Edge Test

Excluded Statistic DF P

[ab] 91192.5000 32 0.0000 +

[ca] 87.3486 18 0.0000 +

[da] 60178.0000 24 0.0000 +

[cb] 23.0770 18 0.1876

[db] 70812.0000 24 0.0000 +

[cd] 64.3488 27 0.0001 +

Formula: Sat:Infl:Type:Cont//

-2logL: 13544.49 DF: 0

MIM gives a slightly weird output here. It writes ”Chi-squared tests”, but in fact, it has
used the appropriate ordinal test for each edge-deletion.

Taking ordinality into account leads to the same final model as before, but now the only
non-significant edge, even at the initial stage, is that between Type and Influence.

We may still try to simplify the model found, now considering simplifications which
remove second-order interactions. There is no easy way to take ordinality into account
for this.

> m2factor1 <- editmim(mstep, deleteTerm = "Sat:Cont:Type")

> summary(m2factor1)

Formula: Type:Cont + Sat:Type + Sat:Infl:Cont//

Variables in model : Type Cont Sat Infl

deviance: 55.845 DF: 42 likelihood: 13600.34

> m2factor2 <- editmim(mstep, deleteTerm = "Sat:Cont:Infl")

> summary(m2factor2)

Formula: Sat:Type:Cont + Infl:Cont + Sat:Infl//

Variables in model : Sat Type Cont Infl

deviance: 45.551 DF: 40 likelihood: 13590.05

And they can then be compared to the model selected by the stepwise search

> modelTest(mstep, m2factor1)

Test of H0 : Sat:Type:Cont + Sat:Infl:Cont//

Against : Type:Cont + Sat:Type + Sat:Infl:Cont//

test: Chi-squared method: asymptotic

stat: 12.09 df: 6 P: 0.06

> modelTest(mstep, m2factor2)

Test of H0 : Sat:Type:Cont + Sat:Infl:Cont//

Against : Sat:Type:Cont + Infl:Cont + Sat:Infl//



test: Chi-squared method: asymptotic

stat: 1.795 df: 4 P: 0.773

They both give an acceptable fit, although the model m2factor1 is close to being sig-
nificant. Note that the mimR output has swapped H0 and the alternative hypothesis in
the text. This will be corrected in the next version of mimR.

If we remove both second-order terms, we get

> m2factor <- editmim(m2factor1, deleteTerm = "Sat:Cont:Infl")

> summary(m2factor)

Formula: Type:Cont + Infl:Cont + Sat:Cont + Sat:Infl + Sat:Type//

Variables in model : Type Cont Infl Sat

deviance: 57.64 DF: 46 likelihood: 13602.14

This model can be compared to the model found by selecting among graphical models.

> modelTest(mstep, m2factor)

Test of H0 : Sat:Type:Cont + Sat:Infl:Cont//

Against : Type:Cont + Infl:Cont + Sat:Cont + Sat:Infl + Sat:Type//

test: Chi-squared method: asymptotic

stat: 13.885 df: 10 P: 0.178

giving quite a reasonable fit.

We can display the final model

> display(m2factor)
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but since mimR does not have the facility of displaying the interaction graph, we need
to do so in MIM if we so wish.

The final model has been decomposed into one with just two cliques. A phenomenon,
known as collapsibility, now ensures that we can proceed with analyzing the data in each
of the marginal tables without paradoxes such as the Yule-Simpson. In fact we could



have looked for removing interactions of higher order in each of these. For example, if
we first specify the saturated marginal model as:

> marg1 <- mim("..", data = ht, marginal = c("Sat", "Infl", "Cont"))

> summary(marg1)

Formula: Sat:Infl:Cont//

Variables in model : Sat Infl Cont

deviance: 0 DF: 0 likelihood: 9419.526

and the model without second-order interactions

> marg12factor <- mim("Sat:Infl+Sat:Cont+Infl:Cont", data = ht,

+ marginal = c("Sat", "Infl", "Cont"))

> summary(marg12factor)

Formula: Sat:Infl+Sat:Cont+Infl:Cont

Variables in model : Sat Infl Cont

deviance: 1.795 DF: 4 likelihood: 9421.322

we can compare

> modelTest(marg1, marg12factor)

Test of H0 : Sat:Infl:Cont//

Against : Sat:Infl+Sat:Cont+Infl:Cont

test: Chi-squared method: asymptotic

stat: 1.795 df: 4 P: 0.773

and get the same value.

Similarly with the other marginal and the corresponding model without second-order
interactions

> marg2 <- mim("..", data = ht, marginal = c("Sat", "Type", "Cont"))

> marg22factor <- editmim(marg2, deleteTerm = "Sat:Cont:Type")

> modelTest(marg2, marg22factor)

Test of H0 : Sat:Type:Cont//

Against : Type:Cont + Sat:Cont + Sat:Type//

test: Chi-squared method: asymptotic

stat: 12.09 df: 6 P: 0.06

The interpretation of the final model is as follows:

• For given level of satisfaction and contact there is no (obvious) relationship between
the type of housing and the feeling of having influence. This statement reflects the
conditional independence between Influence and Type.

• The association between Satisfaction and Influence is the same for both levels of
Contact.

• The association between Satisfaction and Type of housing is the same for both
levels of Contact.



To investigate further whether the latter two relations hold water, we may further ex-
amine the residuals in the two marginal models:

> observed1 <- fitted(marg1)[, 4]

> expected1 <- fitted(marg12factor)[, 4]

> residuals1 <- (observed1 - expected1)/sqrt(expected1)

> hist(residuals1)

Histogram of residuals1
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These look amost suspiciously small, certainly nothing indicates the presence of outliers.

Also, they are not far from normally distributed:

> qqnorm(residuals1)
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Considering the other marginal we get

> observed2 <- fitted(marg2)[, 4]

> expected2 <- fitted(marg22factor)[, 4]

> residuals2 <- (observed2 - expected2)/sqrt(expected2)

> hist(residuals2)



Histogram of residuals2
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Some of these could look suspiciously large

> residuals2[residuals2 > 2]

[1] 2.086083

But there is only a single outlier and the value does not appear dramatic.

> qqnorm(residuals2)
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On the other hand, the distribution seems to be too heavy tailed, so the model does not
fit terribly welll.

We can for example study the dependence of the residuals on the levels of the categorial
variables by producing new dataframes:

> residuals2 <- cbind(fitted(marg2)[, 1:3], residuals2)

> plot(residuals2 ~ Type, data = residuals2)
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which indicates that there may be something different going on in terraced houses. . .

The advantage of using mimR over MIM is that such analyses as above (and many
others) are now very easy to do.
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