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Longitudinal data

Longitudinal data can be seen as a specific type of
multi-level data, where the level one units refer to
observations over time of the value of specific quantities,
taken on the same level two unit.

Typically level two units are here individuals i = 1, . . . , N .
For each of them we have observations Yij , j = 1, . . . , ni

taken at times t1, . . . , tni .

Models for longitudinal data differ from general multilevel
data partly by almost always using time as a covariate, but
specifically by using time in the dependence structure
between measurements taken on the same units.
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Covariates for longitudinal data

As in the multilevel data we may have covariates
xij = (xij1, . . . xijk)> and zi = (zi1 . . . , zil)> at both
levels.

But for longitudinal data xij typically include time or
functions of time, such as e.g.

xij1 = 1, xij2 = tij , xij3 = t2ij

corresponding to a quadratic trend, or

xij1 = 1, xij2 = cos(2πftij), xij3 = sin(2πftij)

corresponding to a periodic trend with period λ = 1/f , etc.
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A general linear model

The general linear model for longitudinal data is then given
as

Yij = α>zj + β>xij + εij ,

where the errors εij are multivariate Gaussian and
correlated as

Cov(εij , εi′j′) = vii′jj′

where

vii′jj′ =
{

c(tij , tij′) if i = i′

0 otherwise,

for some covariance model determined by the function c.
The models thus allow for correlation between observations
from the same individual but assume independence between
individuals.
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Correlation models

A flexible class of covariance models has three components:

c(tij , tij′) = ν2 + σ2ρ(tij − tij′) + τ2δjj′ ,

where δjj′ is 1 for j = j′ and 0 otherwise.

The first component ν2 reflects the intrinsic correlation
between measurements taken on the same individual, as in
the multilevel case.

The second component σ2 describes a (stationary) serial
correlation as known from time series analysis.

The final component τ2 corresponds to an instantaneous
noise term.
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The variogram

The variogram for a stochastic process X(t) is the function

γ(u) =
1
2
E

[
{X(t)−X(t− u)}2

]
, u ≥ 0.

For the error process with three components just defined we
get

γ(u) = τ2 + σ2{1− ρ(u)}, for u > 0.

Choosing ρ so that ρ(0) = 1, limt→∞ ρ(t) = 0 yields

γ(0) = τ2, lim
t→∞

γ(u) = σ2 + τ2 (1)

whereas the process variance is

V{Y (tij)} = c(tij , tij) = ν2 + σ2 + τ2, (2)

6



as reflected in the following diagram, taken from Diggle et
al. (2002).
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Sample variogram

To identify reasonable suggestions for the covariance
structure, residuals rij from a least squares fit of the
parameters are calculated and the sample variogram is
based on a curve through points (uijk, vijk), where

uijk = tij − tik, vijk =
1
2
(rij − rik)2

or rather averages of vijk for indices corresponding to
identical time differences u.

Such a sample variogram gives a first idea of the importance
of the three components of variance using (1) and (2) and
some idea of the shape of the serial correlation function ρ.
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An example of a sample variogram, taken from Diggle et al.
(2002) is seen below. Note that there are few large time
differences, so the variogram becomes noisy for large lags,
here around lag 10.

In this case there is essentially no within pig correlation.
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Choice of correlation function

Generally the time series are often many but short, so there
is little information about the shape of the serial correlation
function and one is forced to rather ad hoc choices.

The serial correlation function must be positive definite to
ensure matrices of the form mrs = ρ(tr − ts) are positive
definite, for all choices of k and t1, . . . , tk.

Typical choices which satisfy these restrictions are

ρ1(t) = e−θ|t|, ρ2(t) = e−θt2/2,

known as the exponential and Gaussian correlation model.

It can be difficult to distinguish these from the sample
variogram.
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Estimation of parameters

In principle this is done in the same way as in other
multi-level models, using residual maximum likelihood
(REML).

Straight maximum likelihood yields strongly biased
estimates of the variance parameters and should be avoided.

Routines for calculating the REML estimates are available
in many forms of software.

They can be calculated using the following steps:

1. Calculate estimates (α̃, β̃) of the linear parameters by
ordinary least squares (OLS), ignoring the correlation;
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2. Calculate the residuals

rij = yij − α̃>zj − β̃>xij

from the OLS analysis;

3. The vector R of residuals is N (0,W ) where the
covariance matrix W has the form

W = ν2A + σ2B(θ) + τ2C

where A,B,C are known matrices, B possibly
depending on θ;

4. Calculate the MLE of (ν2, σ2, τ2, θ) based on the
likelihood for the residuals;
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5. Calculate the final estimates (α̂, β̂) using weighted
least squares (WLS) with weights determined by the
given covariance model and its estimated parameters.
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