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Multilevel observations

Multilevel analysis is concerned with observations with a
nested structure.

For a two-level analysis we typically think of individuals
within groups. The individual level is in general called level
one, the group level level two.

An example of observations of this type can for example be
performance measures for pupils of a specific age-group
within classes.

The levels could be nested yet another time as e.g. classes
within schools. And further, the schools could be grouped
according to regions within countries, etc. although at the
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top-level there might well be problems of compatibility of
performance measures.

For simplicity we will only consider two levels, pupils within
classes.
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An example

As our basic example we will consider a Dutch study
comprising N = 131 classes, each of sizes between 4 and
35, with a total of M = 2287 pupils.

The performance measure of interest is the score on a
language test, and explanatory variables include class sizes
and the IQ of individual pupils.

We let Yij , j = 1, . . . N, i = 1, . . . nj be the score for pupil i
in class j and study the dependence of this response on
covariates such as the IQ xij of the pupil and the size zj of
the class.

xij are level one covariates and zj level two covariates.
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A simple regression model

A first attempt could be to let

Yij = β0 + β1xij + β2zj + Rij

with Rij independent and distributed as N (0, σ2).

This is a standard linear regression model which only has an
indirect multilevel character.

The model ignores that pupils in the same class will tend to
have more similar scores than those in different classes,
even when the covariates are taken into account.

This is a very serious mistake if the variations in score at
group level are not fully explained by the covariates.
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Introducing random effects

For a moment, ignore the covariates xij and zj and
consider instead the model

Yij = β0 + Uj + Rij

where Uj ∼ N (0, τ2). This model then has

V(Yij) = σ2+τ2, Cov(Yij , Yi′j) = τ2, Cov(Yij , Yi′j′) = 0

so that scores of pupils within the same class are correlated.
The correlation is

ρ =
τ2

σ2 + τ2

and is known as the intraclass correlation coefficient.
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This type of model is also known as a random effects
model since one could think of βj = β0 + Uj as a group
effect, in this case modelled as a random effect. Adding
back the covariates leads to

Yij = β0 + β1xij + β2zj + Uj + Rij .

It can give a better overview to introduce an intermediate
variable describing the total class effect

Mj = β0 + β2zj + Uj ; Yij = Mj + β1xij + Rij

where Mj now become missing data, or rather latent
variables.
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Example of a directed graphical model
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Directed graphical models

A probability distribution factorizes w.r.t. a directed acyclic
graph (DAG) D if it has density or probability mass
function f of the form

f(x) =
∏
v∈V

f(xv |xpa(v)),

i.e. into a product of the conditional distributions of each
node given its parents.
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Example of DAG factorization
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The above graph corresponds to the factorization

f(x) = f(x1)f(x2 |x1)f(x3 |x1)f(x4 |x2)
× f(x5 |x2, x3)f(x6 |x3, x5)f(x7 |x4, x5, x6).
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Including parameters in the graph

Directed graphical models become particularly useful when
parameters are explicitly included in the graph.

The factorization can then be written as

f(x | θ) =
∏
v∈V

f(xv |xpa(v),θ).

Each conditional distribution may only depend of part of
the parameter, the ‘parameter parents’.
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Including observations in the graph

To be able to describe complex observational patterns, we
would wish to represent repeated structures. This can be
done through plates as in WinBUGS.
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Estimation of parameters

The maximum likelihood (ML) estimates of the parameters
can be obtained using the EM algorithm, treating Mj as
missing variables.

For ‘complete data’, with Mj observed, the estimation
problem splits into two simple linear regression problems

1. Estimating (β0, β2, τ
2) by regressing Mj on zj ;

2. Estimating β1, σ
2 by regressing Yij −Mj on xij

Unfortunately the ML estimates of the variance
components (σ2, τ2) can be very biased, as these do not
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take into account the loss in degrees of freedom due to the
estimation of regression coefficients.

Instead a method known as residual maximum likelihood or
REML is often used.

This involves (in principle) the following steps

1. Calculate initial estimates of regression coefficients
using OLS, ignoring the multi-level structure;

2. Form residuals

r̂ij = yij − β̂0 − β̂1xij − β̂2zj .

3. These residuals R̂ follow a multivariate normal
distribution with mean 0 and a covariance matrix
Σ(σ2, τ2);
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4. The REML estimates of (σ2, τ2) are the maximum
likelihood estimates based on the residualsR̂.

5. Revised estimates of the regression parameters are
then calculated using appropriate weighted least
squares.

An algorithm of EM type exists for calculating the REML
estimates, but this and other methods have also been
implemented in generally available software.
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Estimating random effects

It could be of independent interest, for example when
making performance ranking, to estimate the level two
effects which are not explained by covariates, i.e.

βj = β0 + Uj .

This can be done by calculating

β̂j = β̂0 + Ê(Uj |Y ),

i.e. the estimated conditional expectation given the
observed data.
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A Bayesian alternative

An alternative method of analysis is to specify prior
distributions of the unknown parameters.

The resulting model is then a Bayesian hierarchical model.

It has a simple representation as a Bayesian graphical
model and WinBUGS provides the necessary software for
estimating all relevant effects using Markov chain
Monte-Carlo methods (MCMC).

Beware that prior distributions can be influential.

Note in particular that the parameters mean different things
when covariates are centered in different ways, yielding
different models with default prior specifications:
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Yi ∼ N(α + βxi, σ
2), α ∼ N(0, 100), β ∼ N(0, 100)

is very different from

Yi ∼ N(α + βx∗i , σ
2), α ∼ N(0, 100), β ∼ N(0, 100),

where x∗i = xi − x̄. Without the prior specifications, the
models would be equivalent, only the interpretation of α
would be different.

Snijders and Bosker (1999) write that BUGS needs
balanced data, i.e. equal group sizes, to be applied.

This is not correct, on the contrary, BUGS was developed
to allow very unbalanced designs indeed.
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