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Basic idea

Latent variable models attempt to explain complex relations
between several variables by simple relations between the
variables and an underlying unobservable, i.e. latent
structure.

Formally we have a collection X = (X1, . . . , Xp) of
manifest variables which can be observed, and a collection
Y = (Y1, . . . , Yq) of latent variables which are unobservable
and ‘explain’ the dependence relationships between the
manifest variables.

Here ‘explaining’ means that the manifest variables are
assumed to be conditionally independent given the latent
variables, corresponding e.g. to the following graph:
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Here Y is the latent variable(s) and there are 5 manifest
variables X1, . . . , X5.

For the model to be useful, q must be much smaller than p.

Data available will be repeated observations of the vector
X = (X1, . . . , Xp) of manifest variables.
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Latent variable models are typically classified according to
the following scheme:

Manifest variable
Latent variable Metrical Categorical

Metrical Factor analysis Latent trait analysis
Categorical Latent profile analysis Latent class analysis

Other terminologies are used, e.g. discrete factor analysis
for latent trait analysis.

Categorical variables can either be ordinal or nominal, and
metrical variables can either be discrete or continuous.
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An example

A classical latent trait model is behind intelligence testing.

The intelligence of any individual is assumed to be a latent
variable Y measured on a continuous scale.

An intelligence test is made using a battery of p tasks, and
an individual scores Xi = 1 if the individual solves task i
and 0 otherwise.

The test is now applied to a number of individuals to
establish and estimate the parameters in the model.

Subsequently the test battery will be used to estimate the
intelligence of a given individual by using

E(Y |X1 = x1, . . . , Xp = xp)
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as the estimate of intelligence for a given individual with
score results x = (x1, . . . , xp).

Typical models will now have the intelligence distributed as

Y ∼ N (µ, σ2)

and the manifest variables as

πi(y) = P (Xi = 1 |Y = y) =
eαi+βiy

1 + eαi+βiy

corresponding to

logit{πi(y)} = αi + βiy,

i.e. the response for each item being a logistic regression on
the latent intelligence.
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This model has too many parameters so we need to
standardise and choose e.g. µ = 0 and σ2 = 1 to have a
chance of estimating αi and βi.

We may increase the dimensionality of this model by
assuming Y and βi are q-dimensional and have

Y ∼ Nq(0, I), logit{πi(y)} = αi + β>i y.

This model is known as the logit/normit model .
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Estimation in latent variable models

Historically, algorithms for maximizing the likelihood
function have been developed separately for each specific
model.

Generally, estimation problems can be very difficult and
there are problems with uniqueness of estimates.

The difficulties show in particular if sample sizes are small
and p is not large relatively to q.

There are also severe problems with the asymptotic
distribution of likelihood ratio tests.

Latent variable models are perfectly suitable for the EM
algorithm as Y is MCAR.
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However, the general ‘well-established’ knowledge is that
the EM algorithm is too slow.

Typicallly, the EM algorithm quickly gets close to the MLE,
but then slows down. This suggests a hybrid approach to
be suitable, where the EM algorithm is applied initially to
get good starting values, then special algorithms for the
final convergence.
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The linear normal factor model

The p manifest variables X> = (X1, . . . , Xp) are linearly
related to the q latent variables Y > = (Y1, . . . , Yq) as

X = µ+ ΛY + U, (1)

where Y and U are independent and follow multivariate
normal distributions

Y ∼ Nq(0, I), U ∼ Np(0,Ψ),

where Ψ is a diagonal matrix, i.e. the indidividual error
terms Ui are assumed independent.

The latent variables Yj are the factors and Λ the matrix of
factor loadings.
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Dependence graph of LNF model
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Graph only displays conditional independences. In addition,
Y1⊥⊥Y2.
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Linear factor analysis

The idea of the LNF model is to describe the variation in X
by variation in a latent Y plus noise, where the number of
factors q is considerably smaller than p.

The problem is now to determine the smallest q for which
the model is adequate, estimate the factor loadings and the
error variances.

The marginal distribution of the observed X is

X ∼ Np(µ,Σ), Σ = ΛΛ> + Ψ.

The factor loadings Λ cannot be determined uniquely. For
example, if O is an orthogonal q × q-matrix and we let
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Λ̃ = ΛO we have

Λ̃Λ̃> = ΛOO>Λ> = ΛΛ>

so Λ and Λ̃ specify same distribution of the observable X.
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Maximum likelihood estimation

Let

S =
1
N

N∑
n=1

(Xn − X̄)(Xn − X̄)>

be the empirical covariance matrix. The likelihood function
after maximizing in µ to obtain µ̂ = X̄ is

logL(Σ) = −np
2

log(2π)− n

2
log det(Σ)− n

2
tr(Σ−1S).

Maximizing this under the constraint Σ = ΛΛ> + Ψ can be
quite tricky.

After some (complex) manipulation, the likelihood
equations can be collected in two separate equations. One
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is the obvious equation

Ψ = diag(S − ΛΛ>) (2)

which gives Ψ in terms of S and Λ.

To express Λ in terms of S and ψ is more complex.
Introduce

S∗ = Ψ−1/2SΨ−1/2, Λ∗ = Ψ−1/2Λ.

Then the MLE of Λ∗ can be determined by the following
two criteria:

1. The columns of Λ∗ = (λ∗1 : · · · : λ∗q) are eigenvectors
of the q largest eigenvalues of S∗.
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2. If Γ is a diagonal matrix with Γii being the eigenvalue
associated with λ∗i , then

Γii > 1, S∗Λ∗ = Λ∗Γ. (3)

A classic algorithm begins with an initial value of Ψ, finds
the eigenvectors e∗i corresponding to the q largest
eigenvalues of S∗, lets λ∗i = θie

∗
i and solves for θi in (3).

When Λ∗ and thereby Λ has been determined in this way, a
new value for Ψ is calculated using (2).

The algorithm can get severe problems if at some point the
constraints ψii > 0 and Γii > 1 are violated.
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The EM algorithm

This is straight-forward. Initialize with Λ and Ψ and
µ = X̄. The E-step imputes the latent variables Y as Ŷn by
exploiting

Ŷn = E(Y |Xn) = Λ>Σ−1(Xn − µ).

The M-step estimates µ,Λ,Ψ by standard linear least
squares in the model

Xn = µ+ ΛŶn + Un.

The algorithm is claimed to be slow, but it is conceptually
simpler and each step is straight-forward so demands very
little computation.
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Choice of the number of factors

Under regularity conditions, the deviance

D = −2{logL(H0)− logL(H1)}
= n{tr(Σ̂−1S)− log det(Σ̂−1S)− p}

has an approximate χ2-distribution with ν degrees of
freedom where

ν =
1
2
{(p− q)2 − (p+ q)}.

One can now either choose q as small as possible with the
deviance being non-significant, or one can minimze AIC or
BIC where

AIC = D + 2ν, BIC = D + ν logN.
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Interpretation

To interpret the results of a factor analysis, it is customary
to look at the communality ci of the manifest variable Xi

ci =
V(Xi)−V(Ui)

V(Xi)
= 1− ψii

ψii +
∑q

j=1 λ
2
ij

which is the proportion of the variation in Xi explained by
the latent factors. Each factor Yj contributes

λij

ψii +
∑q

j=1 λ
2
ij

to this explanation.
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Typically the variables X are standardized so that they add
to 1 and have unit variance, corresponding to considering
just the empirical correlation matrix C instead of S.

Then

ψii +
q∑

j=1

λ2
ij = 1

so that ci = 1− ψii and λ2
ij is the proportion of V(Xi)

explained by Yj .
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Orthogonal rotation

Since Y is only defined up to an orthogonal rotation, we
can choose a rotation ourselves which seems more readily
interpretable, for example one that ‘partitions’ the latent
variables into groups of variables that mostly depend on
specific factors, known as a varimax rotation

A little more dubious rotation relaxes the demand of
orthogonality and allows skew coordinate systems and other
variances than 1 on the latent factors, corresponding to
possible dependence among the factors. Such rotations are
oblique.
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Example

This example is taken from Bartholomew (1987) and is
concerned with 6 different scores in intelligent tests. The
p = 6 manifest variables are

1. Spearman’s G-score

2. Picture completion test

3. Block Design

4. Mazes

5. Reading comprehension

6. Vocabulary
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A 1-factor model gives a deviance of 75.56 with 9 degrees
of freedom and is clearly inadequate.

A 2-factor model gives a deviance of 6.07 with 4 degrees of
freedom and appears appropriate.

The loadings of each of the 6 variables can be displayed as
black dots in the following diagram
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This diagram also shows axes corresponding to varimax and
oblique rotations

It is tempting to conclude that 2, 3 and 4 seem to be
measuring the same thing, whereas 5 and 6 are measuring
something else. The G-score measures a combination of the
two.

The axes of the oblique rotation represent the
corresponding ”dimensions of intelligence”.

Or is it all imagination?
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Dependence graph of simplified model
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Y1 and Y2 are no longer independent.
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