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Conditional independence

Random variables X and Y are conditionally independent
given the random variable Z if

L(X |Y,Z) = L(X |Z).

We then write X ⊥⊥Y |Z

Intuitively:

Knowing Z renders Y irrelevant for predicting X.

Factorisation of probabilities:

X ⊥⊥Y |Z ⇐⇒ pxyzp++z = px+zp+y,z

⇐⇒ ∃a, b : pxyz = ayzbyz.
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Fundamental properties

For any random variables X, Y , Z, and W it holds

(C1) if X ⊥⊥Y |Z then Y ⊥⊥X |Z;

(C2) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥U |Z;

(C3) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥Y | (Z,U);

(C4) if X ⊥⊥Y |Z and X ⊥⊥W | (Y, Z), then
X ⊥⊥ (Y, W ) |Z;

If all joint probabilities pxyzw are strictly positive also

(C5) if X ⊥⊥Y | (Z,W ) and X ⊥⊥Z | (Y,W ) then
X ⊥⊥ (Y, Z) |W .
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Graphical models
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For several variables, complex systems of conditional
independence can be described by undirected graphs.

A set of variables A is conditionally independent of set B,
given the values of a set of variables C if C separates A
from B.
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For example in picture above

1⊥⊥{4, 7} | {2, 3}, {1, 2}⊥⊥ 7 | {4, 5, 6}.

Algebraically the picture represents the fact that the joint
probability of all variables factorizes into terms that only
depends on cliques of the graph. In the pictures:

pijklmno = aijbikcjmcjlckmnclocmno.

Alternatively, the graph can be interpreted by saying that
for each missing edge, there is a conditional independence
associated:

I 6∼ J =⇒ I ⊥⊥ J | remaining variables.
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Formal Markov properties

Formally we say for a given graph G that a distribution
obeys

(P) the pairwise Markov property if

α 6∼ β =⇒ α⊥⊥β |V \ {α, β},

i.e. if all non-neighbours are conditionally
independent given the remaining;

(L) the local Markov property if

∀α ∈ V : α⊥⊥V \ cl(α) | bd(α),

i.e. every variable is conditionally independent of the
remaining given its neighbours;
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(G) the global Markov property if

S separates A from B implies A⊥⊥B |S.

These are all equivalent if probabilities are strictly positive.
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Pairwise Markov property
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Any non-adjacent pair of random variables are conditionally
independent given the remaning.

For example, 1⊥⊥ 5 | {2, 3, 4, 6, 7} and 4⊥⊥ 6 | {1, 2, 3, 5, 7}.
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Local Markov property
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Every variable is conditionally independent of the
remaining, given its neighbours.

For example, 5⊥⊥{1, 4} | {2, 3, 6, 7} and
7⊥⊥{1, 2, 3} | {4, 5, 6}.

9



Global Markov property
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To find conditional independence relations, one should look
for separating sets, such as {2, 3}, {4, 5, 6}, or {2, 5, 6}

For example, it follows that 1⊥⊥ 7 | {2, 5, 6} and
2⊥⊥ 6 | {3, 4, 5}.
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Log–linear models

A = {a1, . . . , aK} denotes a set of (pairwise incomparable)
subsets of ai ⊆ V .

A probability distribution p (or function) factorizes w.r.t. A
if it can be written as a product of terms where each only
depend on variables in the same subset of A.

The set of distributions which factorize w.r.t. A is the
log–linear model generated by A.

A is the generating class of the log–linear model.

It can be shown that a positive probability distribution is
Markov w.r.t. a graph if and only if it factorizes as above
with ai being complete sets, i.e. sets where all elements are
mutual neighbours.
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If the distribution factorizes without being everywhere
positive, it will also satisfy all the Markov properties, but
not the other way around.

Formally, we define the graphical model with graph
G = (V,E) to be the log-linear model with A = C, where C
are the cliques (i.e. maximal complete subsets) of the
graph.
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Example

Consider a three way contingency table, where e.g. mijk

denotes the mean of the counts Nijk in the cell (i, j, k)
which has then been expanded as e.g.

log mijk = αi + βj + γk (1)

or
log mijk = αij + βjk (2)

or
log mijk = αij + βjk + γik, (3)

or (with redundancy)

log mijk = γ + δi + φj + ηk + αij + βjk + γik,
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The additive terms in the expansion are known as
interaction terms of order |a| − 1 or |a|-factor interactions.

Interaction terms of 0th order are called main effects.
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Dependence graph

Any joint probability distribution of has a dependence
graph G = G(P ) = (V,E(P )).

This is defined by letting α 6∼ β in G(P ) exactly when

α⊥⊥β |V \ {α, β}.

X will then satisfy the pairwise Markov w.r.t. G(P ) and
the other Markov properties as well, in the case of positive
probabilities.
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Dependence graph of log–linear model

For any generating class A we can construct the
dependence graph of the corresponding log–linear model.

This is determined by the relation

α ∼ β ⇐⇒ ∃a ∈ A : α, β ∈ a.

They are then also global, local, and pairwise Markov w.r.t.
G(A).

This is by default the graph displayed in MIM.
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Independence

The log–linear model specified by (1) is known as the main
effects model.

It has generating class consisting of singletons only
A = {{I}, {J}, {K}}. It has dependence graph
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Thus it corresponds to complete independence.
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Conditional independence

The log–linear model specified by (2) has no interaction
between I and K.

It has generating class A = {{I, J}, {J,K}} and
dependence graph
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Thus it corresponds to the conditional independence
I ⊥⊥K | J .
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No interaction of second order

The log–linear model specified by (3) has no second-order
interaction. It has generating class
A = {{I, J}, {J,K}, {I,K}} and its dependence graph
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is the complete graph. Thus it has no conditional
independence interpretation.
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Interaction graphs
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The interaction graph of A is the graph with vertices
V ∪ A and edges define by

α ∼ a ⇐⇒ α ∈ a.

Using this graph all log–linear models admit a simple visual
representation. Can be requested in MIM.
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Likelihood function

The likelihood function for an unknown p can be expressed
as

L(p) =
n∏

ν=1

p(xν) =
∏
x∈X

p(x)n(x).

In contingency table form the data follow a multinomial
distribution

P{N(x) = n(x), x ∈ X} =
n!∏

x∈X n(x)!

∏
x∈X

p(x)n(x)

but this only affects the likelihood function by a constant
factor.
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It can be shown that in log-linear models, the likelihood
function has at most one maximum. When zero-values are
allowed, it always has one.

MIM uses an algorithm for fitting known as Iterative
Proportional Fitting which, if properly implemented, also
works in the case where probabilities are allowed to be zero
(sparse tables).

Also implemented e.g. in R in loglin with front end
loglm in MASS.

An alternative is to “pretend” that counts are independent
and Poisson distributed and use glm. However, the
algorithm used there does not work when estimated cell
probabilities are zero.
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