
Introduction to categorical data and
conditional independence

MSc Further Statistical Methods, Lecture 1
Hilary Term 2006

Steffen Lauritzen, University of Oxford; January 18, 2006

1



Categorical Data

Examples of categorical variables

• Sex : Male, Female;

• Colour of Hair : Blond, Red, Neutral, Dark;

• Degree of Satisfaction with work: Low, Medium, High

• Yearly income: Below 10,000, 10,001-20,000,
20,001-40,000, above 40,000;

Some are nominal , others ordinal . They have different
number of states.
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Contingency Table

Data often presented in the form of a contingency table or
cross-classification:

Sex
Admitted Male Female
Yes 1198 557
No 1493 1278

This is a two-way table (or two-way classification) with
categorical variables A: Admitted? and S: Sex. In this case
it is a 2× 2-table.

The numerical entries are cell counts nij , the number of
cases in the category A = i and S = j. The total number
of cases is n =

∑
ij nij .
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Data in list form

Data can also appear in the form of a list of cases:

case Admitted Sex
1 Yes Male
2 Yes Female
3 No Male
4 Yes Male
...

...
...

The contingency table is then formed from the list of cases
by counting the number of cases in each cell of the table.
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Multinomial sampling model

The standard sampling model for data of this form specifies
that cases are independent and pij = P (A = i, S = j) is
the probability that a given case belongs to cell ij.

The cell counts then follow a multinomial distribution

P (Nij = nij , i = 1, . . . I, j = 1, . . . J) =
n!∏

ij nij !

∏
ij

p
nij

ij .

The expected cell counts are

mij = E(Nij) = npij .

Other sampling schemes fixes certain marginal totals or
have a Poisson total N , leading to cell counts being
independent Poisson.
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Hypothesis of independence

A typical hypothesis of interest is that of independence
between the two variables, i.e. that

pij = P (A = i, S = j) = P (A = i)P (S = j) = pi+p+j
,

where

pi+ = P (A = i) =
∑

j

pij , p+j = P (S = j) =
∑

i

pij

are the marginal probabilities.
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Likelihood ratio test

Without assuming independence, the MLE of the cell
probabilities and expected cell counts are

p̂ij = nij/n, m̂ij = np̂ij = nij .

Similarly, assuming independence, the MLE becomes

ˆ̂pij = ni+n+j/n2, ˆ̂mij = n ˆ̂pij = ni+n+j/n,

where
ni+ =

∑
j

nij , n+j =
∑

i

nij
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are the marginal counts. Hence we get

G2 = −2 log Λ = −2 log
L(ˆ̂p)
L(p̂)

= 2
∑
ij

nij log
p̂ij

ˆ̂pij

= 2
∑
ij

nij log
m̂ij

ˆ̂mij

= 2
∑
ij

nij log
nij

ˆ̂mij

= 2
∑

OBS log
OBS

EXP
,

Here OBS refers to the observed cell counts and EXP to
the expected cell counts under the hypothesis.

It can be shown that for large cell counts, G2 is
approximately χ2-distributed with degrees of freedom equal
to (I − 1)(J − 1) which is equal to 1 in this case.
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Pearson’s χ2 statistic

An alternative to the LRT statistic or deviance G2, one can
use the statistic

χ2 =
∑ (OBS− EXP)2

EXP
,

which is an approximation to the deviance and also has
approximately the same distribution, under the null
hypothesis, for large cell counts.

For the approximations to be valid, it is a common rule of
thumb for both G2 and χ2 that the expected cell counts
ˆ̂mij must be larger than 5.

This condition is often not satisfied, in particular in
multi-way tables with many variables.
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Sparse tables

Data on oral lesions by region in India:

Kerala Gujarat Andhra
Labial Mucosa 0 1 0
Buccal Mucosa 8 1 8
Commisure 0 1 0
Gingiva 0 0 1
Hard Palate 0 1 0
Soft palate 0 1 0
Tongue 0 1 1
Floor of Mouth 1 0 1
Alveolar Ridge 1 0 1
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Exact testing methods

In sparse tables such as the data on oral lesions, asymptotic
results can be very misleading.

Instead one can exploit that, under the hypothesis of
independence, the marginals are sufficient and the
conditional distribution of the counts {Nij} is:

P {(nij) | (ni+), (n+j)} =

∏I
i=1 ni+!

∏J
j=1 n+j !

n!
∏I

i=1

∏J
j=1 nij !

. (1)

Fisher’s exact test rejects for small values of the observed
value of P {(nij) | (ni+), (n+j)} and evaluates the p-value
in this distribution as well.
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Monte-Carlo testing

In principle, exact testing requires enumeration of all
possible tables with a given margin.

However, there is an efficient algorithm due to Patefield
(1981) which generates samples {ñij}k, k = 1, . . . K from
the distribution (1).

By choosing K large, the correct p-value for any test
statistic T can be calculated to any degree of accuracy as

p̃ =
|{k : t̃k ≥ tobs}|

K
,

where t̃k is calculated from the table {ñij}k.

This may well be preferable to using asymptotic results.
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Three-way tables

Admissions to Berkeley by department

Department Sex Whether admitted
Yes No

I Male 512 313
Female 89 19

II Male 353 207
Female 17 8

III Male 120 205
Female 202 391

IV Male 138 279
Female 131 244

V Male 53 138
Female 94 299

VI Male 22 351
Female 24 317

Here are three variables A: Admitted?, S: Sex, and D:
Department.
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Conditional independence

For three variables it is of interest to see whether
independence holds for fixed value of one of them, e.g. is
the admission independent of sex for every department
separately? We denote this as A⊥⊥S |D and graphically asu u u

A D S

Algebraically, this corresponds to the relations

pijk = pi+ | kp+j | kp++k =
pi+kp+jk

p++k
.
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Marginal and conditional independence

Note that there the two conditions

A⊥⊥S, A⊥⊥S |D

are very different and will typically not both hold unless we
either have A⊥⊥ (D,S) or (A,D)⊥⊥S, i.e. if one of the
variables are completely independent of both of the others.

This fact is a simple form of what is known as
Yule–Simpson paradox.

It can be much worse than this:

A positive conditional association can turn into a negative
marginal association and vice-versa.
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Admissions revisited

Admissions to Berkeley

Sex Whether admitted
Yes No

Male 1198 1493
Female 557 1278

Note this marginal table shows much lower admission rates
for females.

Considering the departments separately, there is only a
difference for department I, and it is the other way around...
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Florida murderers

Sentences in 4863 murder cases in Florida over the six years
1973-78

Sentence
Murderer Death Other
Black 59 2547
White 72 2185

The table shows a greater proportion of white murderers
receiving death sentence than black (3.2% vs. 2.3%),
although the difference is not big, the picture seems clear.
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Controlling for colour of victim

Sentence
Victim Murderer Death Other
Black Black 11 2309

White 0 111
White Black 48 238

White 72 2074

Now the table for given colour of victim shows a very
different picture. In particular, note that 111 white
murderers killed black victims and none were sentenced to
death.

18



Graphical models
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For several variables, complex systems of conditional
independence can be described by undirected graphs.

Then a set of variables A is conditionally independent of
set B, given the values of a set of variables C if C
separates A from B.
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Conditional independence

Random variables X and Y are conditionally independent
given the random variable Z if

L(X |Y,Z) = L(X |Z).

We then write X ⊥⊥Y |Z

Intuitively:

Knowing Z renders Y irrelevant for predicting X.

Factorisation of probabilities:

X ⊥⊥Y |Z ⇐⇒ pxyzp++z = px+zp+y,z

⇐⇒ ∃a, b : pxyz = ayzbyz.
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Fundamental properties

For any random variables X, Y , Z, and W it holds

(C1) if X ⊥⊥Y |Z then Y ⊥⊥X |Z;

(C2) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥U |Z;

(C3) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥Y | (Z,U);

(C4) if X ⊥⊥Y |Z and X ⊥⊥W | (Y, Z), then
X ⊥⊥ (Y, W ) |Z;

If all joint probabilities pxyzw are strictly positive also

(C5) if X ⊥⊥Y | (Z,W ) and X ⊥⊥Z | (Y,W ) then
X ⊥⊥ (Y, Z) |W .
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