Factor Analysis

Further Statistical Methods, Lecture 8
Hilary Term 2004

Steffen Lauritzen, University of Oxford; February 15, 2005



The linear normal factor model

The p manifest variables X T = (X1,...,X,) are linearly
related to the ¢ /atent variables YT = (Y3,...,Y,) as

X =p+AY +U, (1)

where Y and U are independent and follow multivariate
normal distributions

Y ~ Ny (0,1), U ~N,(0,%),

where VU is a diagonal matrix, i.e. the indidividual error
terms U; are assumed independent.

The latent variables Y} are the factors and A the matrix of
factor loadings.



The idea is to describe the variation in X by variation in a
latent Y plus noise, where the number of factors q is
considerably smaller than p.

The problem is now to determine the smallest g for which
the model is adequate, estimate the factor loadings and the
error variances.

The marginal distribution of the observed X is
X ~Np(p,2), T =AAT + 0.

The factor loadings A cannot be determined uniquely. For

example, if O is an orthogonal ¢ x g-matrix and we let
A = AO we have

AAT = AOOTAT = AAT
so A and A specify same distribution of the observable X.



Maximum likelihood estimation

Let

S—lNX XX, —-X)T
—N;(n_ )(n_)

be the empirical covariance matrix. The likelihood function
after maximizing in u to obtain i = X is

log L(X) = —% log(27) — glogdet(Z) - gtr(E_lS).
Maximizing this under the constraint ¥ = AAT + ¥ can be
quite tricky.

After some (complex) manipulation, the likelihood
equations can be collected in two separate equations. One



is the obvious equation
U = diag(S — AAT) ®)

which gives U in terms of S and A.

To express A in terms of S and ) is more complex.
Introduce

S* =028y A =g 2A

Then the MLE of A* can be determined by the following
two criteria:

1. The columns of A* = (A} :---: \}) are eigenvectors
of the ¢ largest eigenvalues of S*.



2. If T is a diagonal matrix with I';; being the eigenvalue
associated with A, then

Iy >1, S*A* = AT (3)

A classic algorithm begins with an initial value of U, finds
the eigenvectors e; corresponding to the g largest
eigenvalues of S*, lets A¥ = 6;e} and solves for §; in (3).
When A* and thereby A has been determined in this way, a
new value for ¥ is calculated using (2).

The algorithm can get severe problems if at some point the
constraints ¥;; > 0 and I';; > 1 are violated.



The EM algorithm

This is straight-forward. Initialize with A and ¥ and
= X. The E-step imputes the latent variables Y as Y,, by
exploiting

YV, =E(Y|X,)=ATS"Y(X, —p).
The M-step estimates p, A, U by standard linear least
squares in the model
X, = p+AY, +U,.
The algorithm is claimed to be slow, but it is conceptually

simpler and each step is straight-forward so demands very
little computation.



Choice of the number of factors

Under regularity conditions, the deviance
D = —2{logL(Hy)—log L(H,)}
= n{tr(X715) — logdet(S18) — p}

has an approximate x2-distribution with v degrees of
freedom where

v = %{(p -9’ —(p+q)}

One can now either choose ¢ as small as possible with the
deviance being non-significant, or one can minimze AIC or
BIC where

AIC =D +2v, BIC=D+vlogN.



Interpretation

To interpret the results of a factor analysis, it is customary
to look at the communality c; of the manifest variable X;
V(X;) - V() Yii

C; = =

V(Xi) it Dim1 Ay

which is the proportion of the variation in X; explained by
the latent factors. Each factor Y; contributes

.
Yii + 251 A

to this explanation.



Typically the variables X are standardized so that they add
to 1 and have unit variance, corresponding to considering
just the empirical correlation matrix C' instead of S.

Then .
2 _
1/1“ + Z /\ij =1
g=1

so that ¢; = 1 —¢;; and A7} is the proportion of V(X;)
explained by Y.



Orthogonal rotation

Since Y is only defined up to an orthogonal rotation, we
can choose a rotation ourselves which seems more readily
interpretable, for example one that ‘partitions’ the latent
variables into groups of variables that mostly depend on
specific factors, known as a varimax rotation

A little more dubious rotation relaxes the demand of
orthogonality and allows skew coordinate systems and other
variances than 1 on the latent factors. Such rotations are
oblique



Example

This example is taken from Bartholomew (1987) and is
concerned with 6 different scores in intelligent tests. The
p = 6 manifest variables are

© a & W D

. Spearman’s G-score

. Picture completion test

Block Design
Mazes
Reading comprehension

Vocabulary



A 1-factor model gives a deviance of 75.56 with 9 degrees
of freedom and is clearly inadequate.

A 2-factor model gives a deviance of 6.07 with 4 degrees of
freedom and appears appropriate.

The loadings of each of the 6 variables can be displayed as
black dots in the following diagram
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This diagram also shows axes corresponding to varimax and
oblique rotations

It is tempting to conclude that 2, 3 and 4 seem to be
measuring the same thing, whereas 5 and 6 are measuring
something else. The G-score measures a combination of the
two.

The axes of the oblique rotation represent the
corresponding " dimensions of intelligence” .

Or is it all imagination?



