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The linear normal factor model

The p manifest variables X> = (X1, . . . , Xp) are linearly
related to the q latent variables Y > = (Y1, . . . , Yq) as

X = µ+ ΛY + U, (1)

where Y and U are independent and follow multivariate
normal distributions

Y ∼ Nq(0, I), U ∼ Np(0,Ψ),

where Ψ is a diagonal matrix, i.e. the indidividual error
terms Ui are assumed independent.

The latent variables Yj are the factors and Λ the matrix of
factor loadings.
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The idea is to describe the variation in X by variation in a
latent Y plus noise, where the number of factors q is
considerably smaller than p.

The problem is now to determine the smallest q for which
the model is adequate, estimate the factor loadings and the
error variances.

The marginal distribution of the observed X is

X ∼ Np(µ,Σ), Σ = ΛΛ> + Ψ.

The factor loadings Λ cannot be determined uniquely. For
example, if O is an orthogonal q × q-matrix and we let
Λ̃ = ΛO we have

Λ̃Λ̃> = ΛOO>Λ> = ΛΛ>

so Λ and Λ̃ specify same distribution of the observable X.
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Maximum likelihood estimation

Let

S =
1
N

N∑
n=1

(Xn − X̄)(Xn − X̄)>

be the empirical covariance matrix. The likelihood function
after maximizing in µ to obtain µ̂ = X̄ is

logL(Σ) = −np
2

log(2π)− n

2
log det(Σ)− n

2
tr(Σ−1S).

Maximizing this under the constraint Σ = ΛΛ> + Ψ can be
quite tricky.

After some (complex) manipulation, the likelihood
equations can be collected in two separate equations. One
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is the obvious equation

Ψ = diag(S − ΛΛ>) (2)

which gives Ψ in terms of S and Λ.

To express Λ in terms of S and ψ is more complex.
Introduce

S∗ = Ψ−1/2SΨ−1/2, Λ∗ = Ψ−1/2Λ.

Then the MLE of Λ∗ can be determined by the following
two criteria:

1. The columns of Λ∗ = (λ∗1 : · · · : λ∗q) are eigenvectors
of the q largest eigenvalues of S∗.
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2. If Γ is a diagonal matrix with Γii being the eigenvalue
associated with λ∗i , then

Γii > 1, S∗Λ∗ = Λ∗Γ. (3)

A classic algorithm begins with an initial value of Ψ, finds
the eigenvectors e∗i corresponding to the q largest
eigenvalues of S∗, lets λ∗i = θie

∗
i and solves for θi in (3).

When Λ∗ and thereby Λ has been determined in this way, a
new value for Ψ is calculated using (2).

The algorithm can get severe problems if at some point the
constraints ψii > 0 and Γii > 1 are violated.
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The EM algorithm

This is straight-forward. Initialize with Λ and Ψ and
µ = X̄. The E-step imputes the latent variables Y as Ŷn by
exploiting

Ŷn = E(Y |Xn) = Λ>Σ−1(Xn − µ).

The M-step estimates µ,Λ,Ψ by standard linear least
squares in the model

Xn = µ+ ΛŶn + Un.

The algorithm is claimed to be slow, but it is conceptually
simpler and each step is straight-forward so demands very
little computation.
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Choice of the number of factors

Under regularity conditions, the deviance

D = −2{logL(H0)− logL(H1)}
= n{tr(Σ̂−1S)− log det(Σ̂−1S)− p}

has an approximate χ2-distribution with ν degrees of
freedom where

ν =
1
2
{(p− q)2 − (p+ q)}.

One can now either choose q as small as possible with the
deviance being non-significant, or one can minimze AIC or
BIC where

AIC = D + 2ν, BIC = D + ν logN.
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Interpretation

To interpret the results of a factor analysis, it is customary
to look at the communality ci of the manifest variable Xi

ci =
V(Xi)−V(Ui)

V(Xi)
= 1− ψii

ψii +
∑q

j=1 λ
2
ij

which is the proportion of the variation in Xi explained by
the latent factors. Each factor Yj contributes

λij

ψii +
∑q

j=1 λ
2
ij

to this explanation.
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Typically the variables X are standardized so that they add
to 1 and have unit variance, corresponding to considering
just the empirical correlation matrix C instead of S.

Then

ψii +
q∑

j=1

λ2
ij = 1

so that ci = 1− ψii and λ2
ij is the proportion of V(Xi)

explained by Yj .
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Orthogonal rotation

Since Y is only defined up to an orthogonal rotation, we
can choose a rotation ourselves which seems more readily
interpretable, for example one that ‘partitions’ the latent
variables into groups of variables that mostly depend on
specific factors, known as a varimax rotation

A little more dubious rotation relaxes the demand of
orthogonality and allows skew coordinate systems and other
variances than 1 on the latent factors. Such rotations are
oblique

11



Example

This example is taken from Bartholomew (1987) and is
concerned with 6 different scores in intelligent tests. The
p = 6 manifest variables are

1. Spearman’s G-score

2. Picture completion test

3. Block Design

4. Mazes

5. Reading comprehension

6. Vocabulary
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A 1-factor model gives a deviance of 75.56 with 9 degrees
of freedom and is clearly inadequate.

A 2-factor model gives a deviance of 6.07 with 4 degrees of
freedom and appears appropriate.

The loadings of each of the 6 variables can be displayed as
black dots in the following diagram
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This diagram also shows axes corresponding to varimax and
oblique rotations

It is tempting to conclude that 2, 3 and 4 seem to be
measuring the same thing, whereas 5 and 6 are measuring
something else. The G-score measures a combination of the
two.

The axes of the oblique rotation represent the
corresponding ”dimensions of intelligence”.

Or is it all imagination?
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