Factor Analysis

Further Statistical Methods, Lecture 8 Hilary Term 2004

Steffen Lauritzen, University of Oxford; February 15, 2005

The linear normal factor model

The *p* manifest variables $X^{\top} = (X_1, \dots, X_p)$ are linearly related to the *q* latent variables $Y^{\top} = (Y_1, \dots, Y_q)$ as

$$X = \mu + \Lambda Y + U,\tag{1}$$

where \boldsymbol{Y} and \boldsymbol{U} are independent and follow multivariate normal distributions

$$Y \sim \mathcal{N}_q(0, I), \quad U \sim \mathcal{N}_p(0, \Psi),$$

where Ψ is a *diagonal* matrix, i.e. the indidividual error terms U_i are assumed independent.

The latent variables Y_j are the factors and Λ the matrix of factor loadings.

The *idea* is to describe the variation in X by variation in a latent Y plus noise, where the number of factors q is considerably smaller than p.

The *problem* is now to determine the smallest q for which the model is adequate, estimate the factor loadings and the error variances.

The marginal distribution of the observed \boldsymbol{X} is

$$X \sim \mathcal{N}_p(\mu, \Sigma), \quad \Sigma = \Lambda \Lambda^\top + \Psi.$$

The factor loadings Λ cannot be determined uniquely. For example, if O is an orthogonal $q\times q\text{-matrix}$ and we let $\tilde{\Lambda}=\Lambda O$ we have

$$\tilde{\Lambda}\tilde{\Lambda}^{\top} = \Lambda OO^{\top}\Lambda^{\top} = \Lambda\Lambda^{\top}$$

so Λ and $\tilde{\Lambda}$ specify same distribution of the observable X.

Maximum likelihood estimation

Let

$$S = \frac{1}{N} \sum_{n=1}^{N} (X_n - \bar{X}) (X_n - \bar{X})^{\top}$$

be the empirical covariance matrix. The likelihood function after maximizing in μ to obtain $\hat{\mu}=\bar{X}$ is

$$\log L(\Sigma) = -\frac{np}{2}\log(2\pi) - \frac{n}{2}\log\det(\Sigma) - \frac{n}{2}\operatorname{tr}(\Sigma^{-1}S).$$

Maximizing this under the constraint $\Sigma = \Lambda \Lambda^\top + \Psi$ can be quite tricky.

After some (complex) manipulation, the likelihood equations can be collected in two separate equations. One

is the obvious equation

$$\Psi = \operatorname{diag}(S - \Lambda \Lambda^{+}) \tag{2}$$

which gives Ψ in terms of S and Λ .

To express Λ in terms of S and ψ is more complex. Introduce

$$S^* = \Psi^{-1/2} S \Psi^{-1/2}, \quad \Lambda^* = \Psi^{-1/2} \Lambda.$$

Then the MLE of Λ^* can be determined by the following two criteria:

1. The columns of $\Lambda^* = (\lambda_1^* : \cdots : \lambda_q^*)$ are eigenvectors of the q largest eigenvalues of S^* .

2. If Γ is a diagonal matrix with Γ_{ii} being the eigenvalue associated with λ_i^* , then

$$\Gamma_{ii} > 1, \quad S^* \Lambda^* = \Lambda^* \Gamma.$$
 (3)

A classic algorithm begins with an initial value of Ψ , finds the eigenvectors e_i^* corresponding to the q largest eigenvalues of S^* , lets $\lambda_i^* = \theta_i e_i^*$ and solves for θ_i in (3). When Λ^* and thereby Λ has been determined in this way, a new value for Ψ is calculated using (2).

The algorithm can get severe problems if at some point the constraints $\psi_{ii} > 0$ and $\Gamma_{ii} > 1$ are violated.

The EM algorithm

This is straight-forward. Initialize with Λ and Ψ and $\mu=\bar{X}.$ The E-step imputes the latent variables Y as \hat{Y}_n by exploiting

$$\hat{Y}_n = \mathbf{E}(Y \mid X_n) = \Lambda^{\top} \Sigma^{-1} (X_n - \mu).$$

The M-step estimates μ,Λ,Ψ by standard linear least squares in the model

$$X_n = \mu + \Lambda \hat{Y}_n + U_n.$$

The algorithm is claimed to be slow, but it is conceptually simpler and each step is straight-forward so demands very little computation.

Choice of the number of factors

Under regularity conditions, the deviance

$$D = -2\{\log L(H_0) - \log L(H_1)\} \\ = n\{\operatorname{tr}(\hat{\Sigma}^{-1}S) - \log \operatorname{det}(\hat{\Sigma}^{-1}S) - p\}$$

has an approximate $\chi^2\text{-distribution}$ with ν degrees of freedom where

$$\nu = \frac{1}{2} \{ (p-q)^2 - (p+q) \}.$$

One can now either choose q as small as possible with the deviance being non-significant, or one can minimze AIC or BIC where

$$AIC = D + 2\nu, \quad BIC = D + \nu \log N.$$

Interpretation

To interpret the results of a factor analysis, it is customary to look at the *communality* c_i of the manifest variable X_i

$$c_{i} = \frac{\mathbf{V}(X_{i}) - \mathbf{V}(U_{i})}{\mathbf{V}(X_{i})} = 1 - \frac{\psi_{ii}}{\psi_{ii} + \sum_{j=1}^{q} \lambda_{ij}^{2}}$$

which is the proportion of the variation in X_i explained by the latent factors. Each factor Y_j contributes

$$\frac{\lambda_{ij}}{\psi_{ii} + \sum_{j=1}^{q} \lambda_{ij}^2}$$

to this explanation.

Typically the variables X are standardized so that they add to 1 and have unit variance, corresponding to considering just the empirical correlation matrix C instead of S.

Then

$$\psi_{ii} + \sum_{j=1}^{q} \lambda_{ij}^2 = 1$$

so that $c_i = 1 - \psi_{ii}$ and λ_{ij}^2 is the proportion of $\mathbf{V}(X_i)$ explained by Y_j .

Orthogonal rotation

Since Y is only defined up to an orthogonal rotation, we can choose a rotation ourselves which seems more readily interpretable, for example one that 'partitions' the latent variables into groups of variables that mostly depend on specific factors, known as a *varimax* rotation

A little more dubious rotation relaxes the demand of orthogonality and allows skew coordinate systems and other variances than 1 on the latent factors. Such rotations are *oblique*

Example

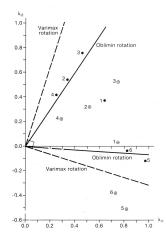
This example is taken from Bartholomew (1987) and is concerned with 6 different scores in intelligent tests. The p = 6 manifest variables are

- 1. Spearman's G-score
- 2. Picture completion test
- 3. Block Design
- 4. Mazes
- 5. Reading comprehension
- 6. Vocabulary

A 1-factor model gives a deviance of 75.56 with 9 degrees of freedom and is clearly inadequate.

A 2-factor model gives a deviance of 6.07 with 4 degrees of freedom and appears appropriate.

The loadings of each of the 6 variables can be displayed as black dots in the following diagram



This diagram also shows axes corresponding to varimax and oblique rotations

It is tempting to conclude that 2, 3 and 4 seem to be measuring the same thing, whereas 5 and 6 are measuring something else. The G-score measures a combination of the two.

The axes of the oblique rotation represent the corresponding "dimensions of intelligence".

Or is it all imagination?