Factor Analysis

Further Statistical Methods, Lecture 8 Hilary Term 2004

Steffen Lauritzen, University of Oxford; February 15, 2005

The linear normal factor model

The p manifest variables $X^{\top}=\left(X_{1}, \ldots, X_{p}\right)$ are linearly related to the q latent variables $Y^{\top}=\left(Y_{1}, \ldots, Y_{q}\right)$ as

$$
\begin{equation*}
X=\mu+\Lambda Y+U \tag{1}
\end{equation*}
$$

where Y and U are independent and follow multivariate normal distributions

$$
Y \sim \mathcal{N}_{q}(0, I), \quad U \sim \mathcal{N}_{p}(0, \Psi)
$$

where Ψ is a diagonal matrix, i.e. the indidividual error terms U_{i} are assumed independent.

The latent variables Y_{j} are the factors and Λ the matrix of factor loadings.

The idea is to describe the variation in X by variation in a latent Y plus noise, where the number of factors q is considerably smaller than p.

The problem is now to determine the smallest q for which the model is adequate, estimate the factor loadings and the error variances.

The marginal distribution of the observed X is

$$
X \sim \mathcal{N}_{p}(\mu, \Sigma), \quad \Sigma=\Lambda \Lambda^{\top}+\Psi
$$

The factor loadings Λ cannot be determined uniquely. For example, if O is an orthogonal $q \times q$-matrix and we let $\tilde{\Lambda}=\Lambda O$ we have

$$
\tilde{\Lambda} \tilde{\Lambda}^{\top}=\Lambda O O^{\top} \Lambda^{\top}=\Lambda \Lambda^{\top}
$$

so Λ and $\tilde{\Lambda}$ specify same distribution of the observable X.

Maximum likelihood estimation

Let

$$
S=\frac{1}{N} \sum_{n=1}^{N}\left(X_{n}-\bar{X}\right)\left(X_{n}-\bar{X}\right)^{\top}
$$

be the empirical covariance matrix. The likelihood function after maximizing in μ to obtain $\hat{\mu}=\bar{X}$ is

$$
\log L(\Sigma)=-\frac{n p}{2} \log (2 \pi)-\frac{n}{2} \log \operatorname{det}(\Sigma)-\frac{n}{2} \operatorname{tr}\left(\Sigma^{-1} S\right) .
$$

Maximizing this under the constraint $\Sigma=\Lambda \Lambda^{\top}+\Psi$ can be quite tricky.

After some (complex) manipulation, the likelihood equations can be collected in two separate equations. One
is the obvious equation

$$
\begin{equation*}
\Psi=\operatorname{diag}\left(S-\Lambda \Lambda^{\top}\right) \tag{2}
\end{equation*}
$$

which gives Ψ in terms of S and Λ.
To express Λ in terms of S and ψ is more complex. Introduce

$$
S^{*}=\Psi^{-1 / 2} S \Psi^{-1 / 2}, \quad \Lambda^{*}=\Psi^{-1 / 2} \Lambda
$$

Then the MLE of Λ^{*} can be determined by the following two criteria:

1. The columns of $\Lambda^{*}=\left(\lambda_{1}^{*}: \cdots: \lambda_{q}^{*}\right)$ are eigenvectors of the q largest eigenvalues of S^{*}.
2. If Γ is a diagonal matrix with $\Gamma_{i i}$ being the eigenvalue associated with λ_{i}^{*}, then

$$
\begin{equation*}
\Gamma_{i i}>1, \quad S^{*} \Lambda^{*}=\Lambda^{*} \Gamma \tag{3}
\end{equation*}
$$

A classic algorithm begins with an initial value of Ψ, finds the eigenvectors e_{i}^{*} corresponding to the q largest eigenvalues of S^{*}, lets $\lambda_{i}^{*}=\theta_{i} e_{i}^{*}$ and solves for θ_{i} in (3). When Λ^{*} and thereby Λ has been determined in this way, a new value for Ψ is calculated using (2).

The algorithm can get severe problems if at some point the constraints $\psi_{i i}>0$ and $\Gamma_{i i}>1$ are violated.

The EM algorithm

This is straight-forward. Initialize with Λ and Ψ and $\mu=\bar{X}$. The E-step imputes the latent variables Y as \hat{Y}_{n} by exploiting

$$
\hat{Y}_{n}=\mathbf{E}\left(Y \mid X_{n}\right)=\Lambda^{\top} \Sigma^{-1}\left(X_{n}-\mu\right) .
$$

The M -step estimates μ, Λ, Ψ by standard linear least squares in the model

$$
X_{n}=\mu+\Lambda \hat{Y}_{n}+U_{n}
$$

The algorithm is claimed to be slow, but it is conceptually simpler and each step is straight-forward so demands very little computation.

Choice of the number of factors

Under regularity conditions, the deviance

$$
\begin{aligned}
D & =-2\left\{\log L\left(H_{0}\right)-\log L\left(H_{1}\right)\right\} \\
& =n\left\{\operatorname{tr}\left(\hat{\Sigma}^{-1} S\right)-\log \operatorname{det}\left(\hat{\Sigma}^{-1} S\right)-p\right\}
\end{aligned}
$$

has an approximate χ^{2}-distribution with ν degrees of freedom where

$$
\nu=\frac{1}{2}\left\{(p-q)^{2}-(p+q)\right\} .
$$

One can now either choose q as small as possible with the deviance being non-significant, or one can minimze AIC or BIC where

$$
A I C=D+2 \nu, \quad B I C=D+\nu \log N .
$$

Interpretation

To interpret the results of a factor analysis, it is customary to look at the communality c_{i} of the manifest variable X_{i}

$$
c_{i}=\frac{\mathbf{V}\left(X_{i}\right)-\mathbf{V}\left(U_{i}\right)}{\mathbf{V}\left(X_{i}\right)}=1-\frac{\psi_{i i}}{\psi_{i i}+\sum_{j=1}^{q} \lambda_{i j}^{2}}
$$

which is the proportion of the variation in X_{i} explained by the latent factors. Each factor Y_{j} contributes

$$
\frac{\lambda_{i j}^{q}}{\psi_{i i}+\sum_{j=1}^{q} \lambda_{i j}^{2}}
$$

to this explanation.

Typically the variables X are standardized so that they add to 1 and have unit variance, corresponding to considering just the empirical correlation matrix C instead of S.

Then

$$
\psi_{i i}+\sum_{j=1}^{q} \lambda_{i j}^{2}=1
$$

so that $c_{i}=1-\psi_{i i}$ and $\lambda_{i j}^{2}$ is the proportion of $\mathbf{V}\left(X_{i}\right)$ explained by Y_{j}.

Orthogonal rotation

Since Y is only defined up to an orthogonal rotation, we can choose a rotation ourselves which seems more readily interpretable, for example one that 'partitions' the latent variables into groups of variables that mostly depend on specific factors, known as a varimax rotation

A little more dubious rotation relaxes the demand of orthogonality and allows skew coordinate systems and other variances than 1 on the latent factors. Such rotations are oblique

Example

This example is taken from Bartholomew (1987) and is concerned with 6 different scores in intelligent tests. The $p=6$ manifest variables are

1. Spearman's G-score
2. Picture completion test
3. Block Design
4. Mazes
5. Reading comprehension
6. Vocabulary

A 1-factor model gives a deviance of 75.56 with 9 degrees of freedom and is clearly inadequate.

A 2-factor model gives a deviance of 6.07 with 4 degrees of freedom and appears appropriate.

The loadings of each of the 6 variables can be displayed as black dots in the following diagram

This diagram also shows axes corresponding to varimax and oblique rotations

It is tempting to conclude that 2,3 and 4 seem to be measuring the same thing, whereas 5 and 6 are measuring something else. The G-score measures a combination of the two.

The axes of the oblique rotation represent the corresponding "dimensions of intelligence".

Or is it all imagination?

