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The EM algorithm

The EM algorithm is an alternative to Newton–Raphson or
the method of scoring for computing MLE in cases where
the complications in calculating the MLE are due to
incomplete observation and data are MAR, missing at
random, with separate parameters for observation and the
missing data mechanism, so the missing data mechanism
can be ignored.

Data (X, Y ) are the complete data whereas only
incomplete data Y = y are observed. (Rubin uses Y = Yobs

and X = Ymis).

The complete data log-likelihood is:

l(θ) = log L(θ;x, y) = log f(x, y; θ).
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The marginal log-likelihood or incomplete data
log-likelihood is based on y alone and is equal to

ly(θ) = log L(θ; y) = log f(y; θ).

We wish to maximize ly in θ but ly is typically quite
unpleasant:

ly(θ) = log
∫

f(x, y; θ) dx.

The EM algorithm is a method of maximizing the latter
iteratively and alternates between two steps, one known as
the E-step and one as the M-step, to be detailed below.

We let θ∗ be and arbitrary but fixed value, typically the
value of θ at the current iteration.

The E-step calculates the expected complete data
log-likelihood ratio q(θ | θ∗):
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q(θ | θ∗) = Eθ∗

[
log

f(X, y; θ)
f(X, y; θ∗)

|Y = y

]
=

∫
log

f(x, y; θ)
f(x, y; θ∗)

f(x | y; θ∗) dx.

The M-step maximizes q(θ | θ∗) in θ for for fixed θ∗, i.e.
calculates

θ∗∗ = arg max
θ

q(θ | θ∗).

We will show that after an E-step and subsequent M-step,
the likelihood function has never decreased.
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Kullback-Leibler divergence

The KL divergence between f and g is

KL(f : g) =
∫

f(x) log
f(x)
g(x)

dx.

Also known as relative entropy of g with respect to f .

Since − log x is a convex function, Jensen’s inequality gives

KL(f : g) ≥ 0 and KL(f : g) = 0 if and only if f = g,
since

KL(f : g) =
∫

f(x) log
f(x)
g(x)

dx ≥ − log
∫

f(x)
g(x)
f(x)

dx = 0,

so KL divergence defines an (asymmetric) distance measure
between probability distributions.
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Expected and marginal log-likelihood

Since f(x | y; θ) = f{(x, y); θ}/f(y; θ) we have

q(θ | θ∗) =
∫

log
f(y; θ)f(x | y; θ)

f(y; θ∗)f(x | y; θ∗)
f(x | y; θ∗) dx

= log f(y; θ)− log f(y; θ∗)

+
∫

log
f(x | y; θ)
f(x | y; θ∗)

f(x | y; θ∗) dx

= ly(θ)− ly(θ∗)−KL(fy
θ∗ : fy

θ ).

Since the KL-divergence is minimized for θ = θ∗,
differentiation of the above expression yields

∂

∂θ
q(θ | θ∗)

∣∣∣∣
θ=θ∗

=
∂

∂θ
ly(θ)

∣∣∣∣
θ=θ∗

.
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Let now θ0 = θ∗ and define the iteration

θn+1 = arg max
θ

q(θ | θn).

Then

ly(θn+1) = ly(θn) + q(θn+1 | θn) + KL(fy
θn+1

: fy
θn

)

≥ ly(θn) + 0 + 0.

So the log-likelihood never decreases after a combined
E-step and M-step.

It follows that any limit point must be a saddle point or a
local maximum of the likelihood function.

The picture on the next overhead should show it all.
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Expected and complete data likelihood

-
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∣∣∣∣
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Mixtures

Consider a sample Y = (Y1, . . . , Yn) from individual
densities

f(y;α, µ) = {αφ(y − µ) + (1− α)φ(y)}

where φ is the normal density

φ(y) =
1√
2π

e−y2/2

and α and µ are both unknown, 0 < α < 1.

This corresponds to a fraction α of the observations being
contaminated, or originating from a different population.
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Incomplete observation

The likelihood function becomes

Ly(α, µ) =
∏

i

{αφ(yi − µ) + (1− α)φ(yi)}

is quite unpleasant, although both Newton–Raphson and
the method of scoring can be used.

But suppose we knew which observations came from which
population?

In other words, let X = (X1, . . . , Xn) be i.i.d. with
P (Xi = 1) = α and suppose that the conditional
distribution of Yi given Xi = 1 was N (µ, 1) whereas given
Xi = 0 it was N (0, 1), i.e. that Xi was indicating whether
Yi was contaminated or not.
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Then the marginal distribution of Y is precisely the mixture
distribution and the ‘complete data likelihood’ is

Lx,y(α, µ) =
∏

i

αxiφ(yi − µ)xi(1− α)1−xiφ(yi)1−xi

∝ α
∑

xi(1− α)n−
∑

xi

∏
i

φ(yi − µ)xi

so taking logarithms we get (ignoring a constant) that

lx,y(α, µ) =
∑

xi log α +
(
n−

∑
xi

)
log(1− α)

−
∑

i

xi(yi − µ)2/2.

If we did not know how to maximize this explicitly,
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differentiation easily leads to:

α̂ =
∑

xi/n, µ̂ =
∑

xiyi/
∑

xi.

Thus, when complete data are available the frequency of
contaminated observations is estimated by the observed
frequency and the mean µ of these is estimated by the
average among the contaminated observations.

12



E-step and M-step

By taking expectations, we get the E-step as

q(α, µ |α∗, µ∗) = Eα∗,µ∗{lX,y(α, µ) |Y = y}

=
∑

x∗i log α +
(
n−

∑
x∗i

)
log(1− α)

−
∑

i

x∗i (yi − µ)2/2

where

x∗i = Eα∗,µ∗(Xi |Yi = yi) = Pα∗,µ∗(Xi = 1 |Yi = yi).

Since this has the same form as the complete data
likelihood, just with x∗i replacing xi, the M-step simply
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becomes

α∗∗ =
∑

x∗i /n, µ∗∗ =
∑

x∗i yi/
∑

x∗i ,

i.e. here the mean of the contaminated observations is
estimated by a weighted average of all the observations, the
weight being proportional to the probability that this
observation is contaminated. In effect, x∗i act as imputed
values of xi.

The imputed values x∗i needed in the E-step are calculated
as follows:

x∗i = E(Xi |Yi = yi) = P (Xi = 1 |Yi = yi)

=
α∗φ(yi − µ∗)

α∗φ(yi − µ∗) + (1− α∗)φ(yi)
.
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