Conditional Independence and Graphical Models

MSc Further Statistical Methods, Lecture 2 Hilary Term 2005

Steffen Lauritzen, University of Oxford; January 21, 2005

Three-way tables

Admissions to Berkeley by department

Department	Sex	Whether admitted	
		Yes	No
1	Male	512	313
	Female	89	19
11	Male	353	207
	Female	17	8
111	Male	120	205
	Female	202	391
IV	Male	138	279
	Female	131	244
V	Male	53	138
	Female	94	299
VI	Male	22	351
	Female	24	317

Here are three variables A: Admitted?, S: Sex, and D: Department.

Conditional independence

For three variables it is of interest to see whether independence holds for fixed value of one of them, e.g. is the admission independent of sex for every department separately?. We denote this as $A \perp \!\!\!\perp S \mid D$ and graphically as

Algebraically, this corresponds to the relations

$$p_{ijk} = p_{i+|k} p_{+j|k} p_{++k} = \frac{p_{i+k} p_{+jk}}{p_{++k}}.$$

Marginal and conditional independence

Note that there the two conditions

 $A \!\perp\!\!\!\perp S, \quad A \!\perp\!\!\!\perp S \,|\, D$

are very different and will typically not both hold unless we either have $A \perp\!\!\!\perp (D,S)$ or $(A,S) \perp\!\!\!\perp D$, i.e. if one of the variables are completely independent of both others.

This fact is a simple form of what is known as *Yule–Simpson paradox.* It can be much worse than this:

A positive conditional association can turn into a negative marginal association and vice-versa.

Graphical models

For several variables, complex systems of conditional independence can be described by undirected graphs.

Then a set of variables A is conditionally independent of set B, given the values of a set of variables C if C separates A from B.

For example in picture above

$$1 \perp\!\!\!\perp \{4,7\} \,|\, \{2,3\}, \qquad \{1,2\} \perp\!\!\!\perp 7 \,|\, \{4,5,6\}.$$

Algebraically the picture represents the fact that the joint probability of all variables factorizes into terms that only depends on *cliques* of the graph. In the pictures:

$$p_{ijklmno} = a_{ij}b_{ik}c_{jm}c_{jl}c_{kmn}c_{lo}c_{mno}.$$