1. Estimation and testing in the Weibull distribution
(a) The score statistic is

$$
S(\theta)=\frac{n}{\theta}+\sum \log x_{i}-\sum x_{i}^{\theta} \log x_{i}
$$

and the likelihood equation can therefore be written.

$$
\begin{equation*}
\theta=\frac{n}{\sum x_{i}^{\theta} \log x_{i}-\sum \log x_{i}} \tag{1}
\end{equation*}
$$

(b) The second derivative of the log-likelihood function is

$$
S^{\prime}(\theta)=-j(\theta)=-\frac{n}{\theta^{2}}-\sum x_{i}^{\theta}\left(\log x_{i}\right)^{2}
$$

and this is clearly negative, so a solution of the likelihood equation must necessarily be the MLE.
(c) The Newton-Raphson iterative step becomes

$$
\theta \leftarrow \theta+\frac{S(\theta)}{j(\theta)}=\theta+\frac{n \theta+\theta \sum \log x_{i}-\theta \sum x_{i}^{\theta} \log x_{i}}{n+\theta^{2} \sum x_{i}^{\theta}\left(\log x_{i}\right)^{2}}
$$

For the method of scoring we need to calculate the Fisher information which involves the integral

$$
\mathbf{E}\left\{X^{\theta}(\log X)^{2}\right\}=\int_{0}^{\infty} x^{\theta}(\log x)^{2} \theta x^{\theta-1} e^{-x^{\theta}} d x
$$

Substituting $u=x^{\theta}, d u=\theta x^{\theta-1}$ we get

$$
\mathbf{E}\left\{X^{\theta}(\log X)^{2}\right\}=\theta^{-2} \int_{0}^{\infty} u\left(\log u^{2}\right) e^{-u} d u=\theta^{-2}\left(\pi^{2} / 6+\gamma^{2}-\gamma\right)
$$

where $\gamma=-0.5772 \ldots$ is Euler's constant. This yields the Fisher information

$$
i(\theta)=\frac{n}{\theta^{2}}\left(1+\pi^{2} / 6+\gamma^{2}-\gamma\right)
$$

and hence the iterative step in the method of scoring becomes

$$
\theta \leftarrow \theta+\frac{S(\theta)}{i(\theta)}=\theta+\frac{n \theta+\theta \sum \log x_{i}-\theta \sum x_{i}^{\theta} \log x_{i}}{n\left(1+\pi^{2} / 6+\gamma^{2}-\gamma\right)}
$$

Finally, it is tempting to use the equation (1) as a basis for an iteration

$$
\theta \leftarrow \frac{n}{\sum_{i} x_{i}^{\theta} \log x_{i}-\sum \log x_{i}}
$$

although its convergence properties are not all that clear.
(d) The LRT rejects for large values of

$$
\log \frac{f(X ; 2)}{f(X ; 1)}=n \log 2+\sum_{i}\left(\log X_{i}-X_{i}^{2}+X_{i}\right)
$$

The distribution of this statistic is not explicitly available, so the critical value for the test must be calculated approximately, either referring to the Central Limit Theorem so that

$$
T=t(X)=\sum_{i}\left(\log X_{i}-X_{i}^{2}+X_{i}\right) \stackrel{\text { a }}{\sim} \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

where

$$
\mu=\mathbf{E}\left(\log X-X^{2}+X\right), \quad \sigma^{2}=\mathbf{V}\left(\log X-X^{2}+X\right)
$$

or-probably most easily and accurately, at least for moderate sample size n-by calculating a Monte-Carlo p-value as follows:
Under the null hypothesis $\theta=1, X$ is exponentially distributed. Simulate N samples of size n from the exponential distribution,

$$
X_{i}^{*}=\left(X_{i 1}^{*}, \ldots, X_{i n}^{*}\right), i=1, \ldots, N
$$

for example by letting $X_{i j}^{*}=-\log U_{i j}$, where $U_{i j}$ are independent and uniform on $(0,1)$.
Now calculate T above and $T_{i}^{*}=t\left(X_{i}^{*}\right)$ and define the Monte-Carlo p-value $p^{*}=p_{N}^{*}$ for the LRT as

$$
p^{*}=\frac{\left|\left\{i \mid T_{i}^{*}>T\right\}\right|}{N}
$$

Now reject H_{0} if $p^{*}<\alpha$.
(e) The maximized LRT for the null hypothesis $H_{0}: \theta=1 \mathrm{vs}$. the alternative $H_{A}: \theta \neq 1$ rejects for large values of

$$
\log L(\hat{\theta})-\log L(1)=n \log \hat{\theta}+(\hat{\theta}-1) \sum_{i} \log X_{i}+\sum_{i}\left(X_{i}^{\hat{\theta}}-X_{i}\right)
$$

To determine the critical value one can either use a Monte-Carlo procedure similar to the one above or the fact that twice the above statistic has an asymptotic χ^{2}-distribution with one degree of freedom.
(f) The score test for the null hypothesis $H_{0}: \theta=1$ vs. the alternative $H_{A}: \theta \neq 1$ rejects for

$$
\begin{aligned}
\{S(1)\}^{2} & =\left(n+\sum \log x_{i}-\sum x_{i} \log x_{i}\right)^{2} \\
& >\chi^{2}(1)_{1-\alpha} i(1)=\chi^{2}(1)_{1-\alpha}\left(\pi^{2} / 6+\gamma^{2}-\gamma\right)
\end{aligned}
$$

(g) Alternative large sample tests include the χ^{2}-test which rejects for

$$
n\left(\pi^{2} / 6+\gamma^{2}-\gamma\right)(\hat{\theta}-1)^{2}>\chi_{1-\alpha}^{2}
$$

and Wald's test which rejects for

$$
\frac{n}{\hat{\theta}^{2}}\left(\pi^{2} / 6+\gamma^{2}-\gamma\right)(\hat{\theta}-1)^{2}>\chi_{1-\alpha}^{2}
$$

The latter has very small power for large alternatives.
2. Comparing Poisson rates Let $X=\left(X_{1}, \ldots, X_{k}\right)$ be independent and Poisson distributed with parameter λ_{i} as

$$
f\left(x_{i} ; \lambda_{i}\right)=\frac{\lambda_{i}^{x_{i}}}{x_{i}!} e^{-\lambda_{i}}, x_{i}=0,1, \ldots
$$

where $\lambda_{i}>0$ are unknown.
(a) The joint density is

$$
f(x ; \lambda)=\prod_{i} \frac{\lambda_{i}^{x_{i}}}{x_{i}!} e^{-\lambda_{i}}=\left(\prod_{i} \frac{1}{x_{i}!}\right) e^{\sum x_{i} \log \lambda_{i}-\sum \lambda_{i}} .
$$

This is recognized as a canonical exponential family with canonical statistic $t(X)=X=\left(X_{1}, \ldots, X_{k}\right)$ so the MLE is found by equating the statistic to its expectation. Since $\mathbf{E}\left(X_{i}\right)=\lambda_{i}$ it holds that

$$
\hat{\lambda}=\left(\hat{\lambda}_{1}, \ldots, \hat{\lambda}_{k}\right)=\left(X_{1}, \ldots, X_{k}\right) .
$$

This result could also have been derived easily by direct differentiation.
(b) In this case, the expression for the density reduces to

$$
f(x ; \lambda)=\left(\prod_{i} \frac{d_{i}^{x_{i}}}{x_{i}!}\right) e^{\log \alpha \sum x_{i}-\alpha \sum d_{i}}
$$

This is again a canonical exponential family, but this time with $t(X)=$ $\sum X_{i}$ as canonical statistic. Equating the statistic to its expectation yields

$$
\sum X_{i}=\alpha \sum d_{i}, \quad \hat{\alpha}=\sum X_{i} / \sum d_{i}
$$

and hence

$$
\hat{\hat{\lambda}}=\left\{\frac{\sum X_{i}}{\sum d_{i}} d_{1}, \ldots, \frac{\sum X_{i}}{\sum d_{i}} d_{k}\right\}
$$

as required. Again, the result could also have been obtained directly by differentiation of the log-likelihood function.
(c) The maximized LRT statistic is

$$
\begin{aligned}
-2 \log \Lambda & =2 \log L(\hat{\lambda})-2 \log L(\hat{\hat{\lambda}}) \\
& =2\left(\sum X_{i} \log \hat{\lambda}_{i}-\sum \hat{\lambda}_{i}-\sum X_{i} \log \hat{\hat{\lambda}}_{i}+\sum \hat{\hat{\lambda}}_{i}\right) \\
& =2\left\{\sum X_{i} \log \frac{X_{i}}{\hat{\alpha} d_{i}}-\sum\left(X_{i}-\hat{\alpha} d_{i}\right)\right\} .
\end{aligned}
$$

The maximized LRT follows asymptotically a χ^{2}-distribution with $k-1$ degrees of freedom.
Remark: Formally, there is no n which tends to infinity. The asymptotic result holds for $\alpha \rightarrow \infty$ but strictly speaking this demands another variant of the asymptotic result than the standard one given in the notes.
(d) The Fisher information matrix $i(\lambda)$ for λ is a diagonal matrix with diagonal elements $\mathbf{V}\left(X_{i}\right)=\lambda_{i}$. The Wald test statistic for H_{0} is thus

$$
\begin{aligned}
W & =(\hat{\lambda}-\hat{\hat{\lambda}})^{\top} i(\hat{\lambda})^{-1}(\hat{\lambda}-\hat{\hat{\lambda}}) \\
& =\sum \frac{\left(X_{i}-\hat{\alpha} d_{i}\right)^{2}}{X_{i}} \\
& =\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { observed }} .
\end{aligned}
$$

The same remark as above applies to the interpretation of the fact that W has an asymptotic distribution as a χ^{2} with $k-1$ degrees of freedom.
(e) The χ^{2} test statistic for H_{0} is using $i(\hat{\hat{\lambda}})$ instead of $i(\hat{\lambda})$ in the Wald test. This leads to

$$
\begin{aligned}
X^{2} & =(\hat{\lambda}-\hat{\hat{\lambda}})^{\top} i(\hat{\hat{\lambda}})^{-1}(\hat{\lambda}-\hat{\hat{\lambda}}) \\
& =\sum \frac{\left(X_{i}-\hat{\alpha} d_{i}\right)^{2}}{\hat{\alpha} d_{i}} \\
& =\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
\end{aligned}
$$

which is the familiar χ^{2} statistic.
(f) The maximized LRT for H_{1} under the assumption that H_{0} is true is

$$
\begin{aligned}
-2 \log \tilde{\Lambda} & =2 \log L(\hat{\hat{\lambda}})-2 \log L(\tilde{\lambda}) \\
& =2\left(\sum X_{i} \log \hat{\hat{\lambda}}_{i}-\sum \hat{\hat{\lambda}}_{i}-\sum X_{i} \log d_{i}+\sum d_{i}\right) \\
& =2\left\{\sum X_{i} \log \frac{\hat{\alpha} d_{i}}{d_{i}}-\sum\left(\hat{\alpha} d_{i}-d_{i}\right)\right\} \\
& =2\left\{\log \hat{\alpha} \sum X_{i}+(1-\hat{\alpha}) \sum d_{i}\right\},
\end{aligned}
$$

where $\tilde{\lambda}=\left(d_{1}, \ldots, d_{k}\right)$. This LRT has an asymptotic χ^{2} distribution with 1 degree of freedom.

