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1. Estimation and testing in the Weibull distribution

(a) The score statistic is

S(θ) =
n

θ
+
∑

log xi −
∑

xθ
i log xi

and the likelihood equation can therefore be written.

θ =
n∑

xθ
i log xi −

∑
log xi

. (1)

(b) The second derivative of the log-likelihood function is

S′(θ) = −j(θ) = − n

θ2
−
∑

xθ
i (log xi)2

and this is clearly negative, so a solution of the likelihood equation
must necessarily be the MLE.

(c) The Newton–Raphson iterative step becomes

θ ← θ +
S(θ)
j(θ)

= θ +
nθ + θ

∑
log xi − θ

∑
xθ

i log xi

n + θ2
∑

xθ
i (log xi)2

.

For the method of scoring we need to calculate the Fisher information
which involves the integral

E{Xθ(log X)2} =
∫ ∞

0
xθ(log x)2θxθ−1e−xθ

dx.

Substituting u = xθ, du = θxθ−1 we get

E{Xθ(log X)2} = θ−2
∫ ∞

0
u(log u2)e−u du = θ−2(π2/6 + γ2 − γ)

where γ = −0.5772 . . . is Euler’s constant. This yields the Fisher infor-
mation

i(θ) =
n

θ2
(1 + π2/6 + γ2 − γ)

and hence the iterative step in the method of scoring becomes

θ ← θ +
S(θ)
i(θ)

= θ +
nθ + θ

∑
log xi − θ

∑
xθ

i log xi

n(1 + π2/6 + γ2 − γ)
.

Finally, it is tempting to use the equation (1) as a basis for an iteration

θ ← n∑
i x

θ
i log xi −

∑
log xi

although its convergence properties are not all that clear.
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(d) The LRT rejects for large values of

log
f(X; 2)
f(X; 1)

= n log 2 +
∑

i

(log Xi −X2
i + Xi).

The distribution of this statistic is not explicitly available, so the critical
value for the test must be calculated approximately, either referring to
the Central Limit Theorem so that

T = t(X) =
∑

i

(log Xi −X2
i + Xi)

a∼ N (nµ, nσ2),

where

µ = E(log X −X2 + X), σ2 = V(log X −X2 + X),

or—probably most easily and accurately, at least for moderate sample
size n—by calculating a Monte–Carlo p-value as follows:
Under the null hypothesis θ = 1, X is exponentially distributed. Sim-
ulate N samples of size n from the exponential distribution,

X∗
i = (X∗

i1, . . . , X
∗
in), i = 1, . . . , N,

for example by letting X∗
ij = − log Uij , where Uij are independent and

uniform on (0, 1).
Now calculate T above and T ∗i = t(X∗

i ) and define the Monte–Carlo
p-value p∗ = p∗N for the LRT as

p∗ =
|{i |T ∗i > T}|

N
.

Now reject H0 if p∗ < α.

(e) The maximized LRT for the null hypothesis H0 : θ = 1 vs. the alter-
native HA : θ 6= 1 rejects for large values of

log L(θ̂)− log L(1) = n log θ̂ + (θ̂ − 1)
∑

i

log Xi +
∑

i

(X θ̂
i −Xi).

To determine the critical value one can either use a Monte-Carlo proce-
dure similar to the one above or the fact that twice the above statistic
has an asymptotic χ2-distribution with one degree of freedom.

(f) The score test for the null hypothesis H0 : θ = 1 vs. the alternative
HA : θ 6= 1 rejects for

{S(1)}2 =
(
n +

∑
log xi −

∑
xi log xi

)2

> χ2(1)1−αi(1) = χ2(1)1−α(π2/6 + γ2 − γ).
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(g) Alternative large sample tests include the χ2-test which rejects for

n(π2/6 + γ2 − γ)(θ̂ − 1)2 > χ2
1−α

and Wald’s test which rejects for

n

θ̂2
(π2/6 + γ2 − γ)(θ̂ − 1)2 > χ2

1−α.

The latter has very small power for large alternatives.

2. Comparing Poisson rates Let X = (X1, . . . , Xk) be independent and Poisson
distributed with parameter λi as

f(xi;λi) =
λxi

i

xi!
e−λi , xi = 0, 1, . . .

where λi > 0 are unknown.

(a) The joint density is

f(x;λ) =
∏
i

λxi
i

xi!
e−λi =

(∏
i

1
xi!

)
e
∑

xi log λi−
∑

λi .

This is recognized as a canonical exponential family with canonical
statistic t(X) = X = (X1, . . . , Xk) so the MLE is found by equating
the statistic to its expectation. Since E(Xi) = λi it holds that

λ̂ = (λ̂1, . . . , λ̂k) = (X1, . . . , Xk).

This result could also have been derived easily by direct differentiation.

(b) In this case, the expression for the density reduces to

f(x;λ) =

(∏
i

dxi
i

xi!

)
elog α

∑
xi−α

∑
di .

This is again a canonical exponential family, but this time with t(X) =∑
Xi as canonical statistic. Equating the statistic to its expectation

yields ∑
Xi = α

∑
di, α̂ =

∑
Xi/

∑
di

and hence
ˆ̂
λ =

{∑
Xi∑
di

d1, . . . ,

∑
Xi∑
di

dk

}
as required. Again, the result could also have been obtained directly
by differentiation of the log-likelihood function.
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(c) The maximized LRT statistic is

−2 log Λ = 2 log L(λ̂)− 2 log L(ˆ̂λ)

= 2
(∑

Xi log λ̂i −
∑

λ̂i −
∑

Xi log ˆ̂
λi +

∑ ˆ̂
λi

)
= 2

{∑
Xi log

Xi

α̂di
−
∑

(Xi − α̂di)
}

.

The maximized LRT follows asymptotically a χ2-distribution with k−1
degrees of freedom.
Remark: Formally, there is no n which tends to infinity. The asymptotic
result holds for α → ∞ but strictly speaking this demands another
variant of the asymptotic result than the standard one given in the
notes.

(d) The Fisher information matrix i(λ) for λ is a diagonal matrix with
diagonal elements V(Xi) = λi. The Wald test statistic for H0 is thus

W = (λ̂− ˆ̂
λ)>i(λ̂)−1(λ̂− ˆ̂

λ)

=
∑ (Xi − α̂di)2

Xi

=
∑ (observed− expected)2

observed
.

The same remark as above applies to the interpretation of the fact that
W has an asymptotic distribution as a χ2 with k−1 degrees of freedom.

(e) The χ2 test statistic for H0 is using i(ˆ̂λ) instead of i(λ̂) in the Wald
test. This leads to

X2 = (λ̂− ˆ̂
λ)>i(ˆ̂λ)−1(λ̂− ˆ̂

λ)

=
∑ (Xi − α̂di)2

α̂di

=
∑ (observed− expected)2

expected
,

which is the familiar χ2 statistic.

(f) The maximized LRT for H1 under the assumption that H0 is true is

−2 log Λ̃ = 2 log L(ˆ̂λ)− 2 log L(λ̃)

= 2
(∑

Xi log ˆ̂
λi −

∑ ˆ̂
λi −

∑
Xi log di +

∑
di

)
= 2

{∑
Xi log

α̂di

di
−
∑

(α̂di − di)
}

= 2
{
log α̂

∑
Xi + (1− α̂)

∑
di

}
,
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where λ̃ = (d1, . . . , dk). This LRT has an asymptotic χ2 distribution
with 1 degree of freedom.

Steffen L. Lauritzen, University of Oxford April 5, 2005
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